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Fig. 1. We introduce FRANKENGAN, a method to add detail to coarse mass models. This method allows the user to automatically generate diverse geometry
and texture detail for a mass model (blue), while also giving the user control over the resulting style (through exemplar images, red). Geometric details (green)
and textures (right) are generated by multiple generative adversarial networks with synchronized styles. A detailed view of this model is shown in Figure 14.

Coarse building mass models are now routinely generated at scales ranging
from individual buildings to whole cities. Such models can be abstracted
from raw measurements, generated procedurally, or created manually. How-
ever, these models typically lack any meaningful geometric or texture details,
making them unsuitable for direct display. We introduce the problem of au-
tomatically and realistically decorating such models by adding semantically
consistent geometric details and textures. Building on the recent success
of generative adversarial networks (GANs), we propose FRANKENGAN, a
cascade of GANSs that creates plausible details across multiple scales over
large neighborhoods. The various GANs are synchronized to produce con-
sistent style distributions over buildings and neighborhoods. We provide the
user with direct control over the variability of the output. We allow him/her
to interactively specify the style via images and manipulate style-adapted
sliders to control style variability. We test our system on several large-scale
examples. The generated outputs are qualitatively evaluated via a set of
perceptual studies and are found to be realistic, semantically plausible, and
consistent in style.
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1 INTRODUCTION

We propose a framework to add geometric and texture details to
coarse building models, commonly referred to as mass models. There
are multiple sources of such coarse models: they can be gener-
ated from procedural models, reconstructed from aerial images and
LIDAR data, or created manually by urban planners, artists and
architects.

By themselves, these mass models lack geometric and texture
details. They therefore look unrealistic when directly displayed. For
many applications, decorating these models by adding details that
are automatically generated would be desirable. However, naive
attempts to decorate mass models lead to unconvincing results.
Examples include assigning uniform colors to different building
fronts, ‘attaching’ rectified street-view images (when available) to
the mass model faces, or synthesizing facade textures using current
generative adversarial networks (see Figure 2). A viable alternative is
to use rule-based procedural models, for both geometric and texture
details. However, such an approach requires time and expertise.

ACM Trans. Graph., Vol. 37, No. 6, Article 1. Publication date: November 2018.


https://doi.org/10.1145/3272127.3275065
https://doi.org/10.1145/3272127.3275065

1:2 « Tom Kelly, Paul Guerrero, Anthony Steed, Peter Wonka, and Niloy J. Mitra

uniform N
colors

Fig. 2. Naive options to texture a mass model give unconvincing results.
Pix2Pix shows heavy mode collapse, discussed in Section 6.3.

Instead, we build on the recent success of machine learning using
generative adversarial networks (GANs) to simplify the modeling
process and to learn facade details directly from real-world data. We
focus on two issues to make GANs suitable for our application. First,
current GANs are concerned only with the generation of textures,
but we also require semantic and geometric details for our urban
modeling applications. Second, current GANs provide little style
control. We would like to improve control over the style of facade
details. For example, a user may wish to decorate a mass model
in the style of a given example facade, or to specify how similar
facades should be within an urban neighborhood.

Here, we consider the problem of automatically and realistically
detailing mass models using user-supplied building images for style-
guidance, with the option to adjust style variety. By details, we refer
to both geometric and texture, details. Geometric details include
balconies, window frames, roof types, chimneys, etc., while texture
details refer to realistic facade appearances that are consistent with
(latent) semantic elements such as windows, sills, etc. Further, we
require the added details to be stylistically consistent and guided by
user-provided input image(s). We do not expect the input images
to be semantically-annotated or to correspond to the target mass
models. The output of our algorithm (see Figure 1) is a mixture of
2.5D geometry with textures and realistic variations.

Technically, we perform detailing in stages via a cascade of GANS.
We engineer the individual GANSs to generate particular styles that
are encoded as latent vectors. As a result, we can synchronize the
different GAN outputs by selecting style vectors from appropriate
distributions. We demonstrate how to perform such style-guided
synthesis for both geometric and texture details. By allowing style
vectors to be guided by input images, we allow users to perform, at
interactive rates, drag-and-drop stylization by simply providing dif-
ferent target images (see supplementary video). Our system, called
FRANKENGAN, ensures that the resultant detailed models are realis-
tic and are stylistically consistent both within individual buildings
and between buildings in a neighborhood.

We test our system by detailing a variety of mass models over
large-scale city neighborhoods. We then compare the quality of
the detailed models against baseline alternatives using a perceptual
study. In summary, our main contributions are: (i) introducing the
problem of realistically detailing mass models with semantically
consistent geometric and texture details; (ii) presenting FRANKEN-
GAN as an interactive system that utilizes latent style vectors via a
cascade of synchronized GANs guided by examplar style images;
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and (iii) demonstrating the system on several large-scale examples
and qualitatively evaluating the generated output. Source code and
pre-trained networks are available at http://geometry.cs.ucl.ac.uk/
projects/2018/ frankengan/.

2 RELATED WORK

In the following, we review related work on the computational
design of facade layouts and generative adversarial networks.

Computational facade layouts. Rule-based procedural model-
ing can be used to model facades and mass models [Mueller et al.
2006; Schwarz and Miiller 2015; Wonka et al. 2003]. An alternative
to pure procedural modeling is the combination of optimization
with declarative or procedural descriptions. Multiple recent frame-
works specifically target the modeling of facades and buildings [Bao
et al. 2013; Bokeloh et al. 2012; Dang et al. 2014; II¢ik et al. 2015;
Lin et al. 2011], and urban layouts [Vanegas et al. 2012]. There
are also multiple approaches that target more general procedural
modeling [Ritchie et al. 2015; Talton et al. 2011; Yeh et al. 2013].

Several methods obtain a facade layout by segmenting existing
facade images, and then either fitting a procedural model [Teboul
et al. 2013], or optimizing the segmentation to follow architectural
principles [Cohen et al. 2014; Mathias et al. 2016]. This reconstruc-
tion is different from our generative approach, which synthesizes
novel detail layouts without reference images.

Another important avenue of recent work is the combination of
machine learning and procedural modeling. One goal is inverse pro-
cedural modeling, where grammar rules and grammar parameters
are learned from data. One example approach is Bayesian model
merging [Stolcke and Omohundro 1994], which was adopted by
multiple authors for learning grammars [Martinovic and Van Gool
2013; Talton et al. 2012]. While this approach shares some goals with
our project, the learning techniques employed were not powerful
enough to encode design knowledge and thus only very simple ex-
amples were presented. Recently, deep learning was used for shape
and scene synthesis of architectural content. Nishida et al. [2016]
proposed an interactive framework to interpret sketches as the outer
shell of 3D building models. More recently, Wang et al. [2018] used
deep learning to predict furniture placement inside a room. Auto-
matic detailing of mass models, which is the focus of our method,
has not yet been attempted using a data-driven approach.

Generative adverserial networks (GANs). Supervised deep
learning has played a crucial role in recent developments in sev-
eral computer vision tasks, e.g., object recognition [He et al. 2016;
Krizhevsky et al. 2012], semantic segmentation [Long et al. 2015],
and activity recognition/detection [Escorcia et al. 2016; Tran et al.
2015]. In contrast, weakly supervised or unsupervised deep learn-
ing has been popular for image and texture synthesis tasks. In this
context, Generative Adversarial Networks (GANs) have emerged
as a promising family of unsupervised learning techniques that
have recently been used to model simple natural images (e.g., faces
and flowers) [Goodfellow et al. 2014]. They can learn to emulate
the training set, enable sampling from that domain and use the
learned knowledge for useful applications. Since their introduc-
tion, many variations of GANs have been proposed to overcome
some of the impediments they face (e.g., instability during training)
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Fig. 3. In contrast to photogrammetric reconstruction (second column), our method can be used to synthesize new facade layouts and textures. Style and
variation can be controlled by the user; in columns 3 to 5, we show details generated by FRANKENGAN with low to high style variation.

[Arjovsky et al. 2017; Berthelot et al. 2017; Denton et al. 2015; Guru-
murthy et al. 2017; Salimans et al. 2016; Springenberg 2016; Warde-
Farley and Bengio 2017; Zhao et al. 2017]. Three versions of GANs
are of particular interest for our work. First, the Pix2Pix frame-
work using conditional GANSs [Isola et al. 2017] is useful for image
to image translation. The authors provide results for translating
a facade label image into a textured facade image. Second, Cycle-
GAN [Zhu et al. 2017a] is useful to learn image-to-image translation
tasks without requiring a corresponding pair of images in the two
styles. Third, BicycleGAN [Zhu et al. 2017b] is another extension of
image to image translation that improves the variations that can be
generated.

Interestingly, GANs have proven useful in several core image pro-
cessing and computer vision tasks, including image inpainting [Yeh
et al. 2016], style transfer [Johnson et al. 2016], super-resolution
[Isola et al. 2017; Ledig et al. 2017], manifold traversing [Zhu et al.
2016], hand pose estimation [Wan et al. 2017], and face recognition
[Tran et al. 2017]. However, the applications of GANSs are not limited
to the computer vision and image processing communities; adver-
sarial models are being explored for graphics applications. Examples
include street network synthesis [Hartmann et al. 2017], volume
rendering engines [Berger et al. 2018], and adaptive city-scene gen-
eration [Veeravasarapu et al. 2017]. In this paper, we adapt GANs to
detail synthesis for detailing building mass models using exemplar
images for style guidance.

3 OVERVIEW

The input to our method is a coarse building mass model with a given
set of flat facades and a roof with known hip- and ridge-lines. Our
goal is to generate texture and geometric details on the facades and
the roof. These details are generated with a cascade of GANs. Our
generative approach contrasts with the reconstruction performed
by photogrammetric approaches, see Figure 3 for a comparison. In
contrast to traditional GAN setups, our method allows control over
the style of the synthesized outputs. It generates geometric detail in
addition to texture detail. Geometric detail is generated by training
the GANs to output an additional label map that can be used to
select the type of geometry to place at each location on the facade
and roof (if any).

We interleave GANSs that output structural labels with those that
output textures. This leads to several desirable properties that are
difficult to obtain with traditional end-to-end GAN setups: Firstly,
the output should exhibit a plausible structure. For example, win-
dows tend to be arranged in grids, and the ground floor usually
has a different structure than the other floors. In our experiments

we found that training a GAN end-to-end makes it difficult to ob-
tain plausible structure; the structure is never given explicitly as
an objective and it must be deduced from the facade texture. The
structural labels also allow us to map the output bitmaps to 3D
geometry, regularize the outputs using known priors, and permit
users to manually modify the structure. Secondly, the user should
have some control over the style of the output. Facades of the same
building usually have the same style, while the amount of style
variation in a block of buildings depends on the city and area. Gen-
erating realistic city blocks therefore requires control over the style.
Figure 3 presents a few examples. Thirdly, we wish to improve
upon the quality achievable with a generic GAN architecture like
Pix2Pix [Isola et al. 2017]. While recent work has shown remarkable
quality and resolution [Karras et al. 2018], achieving this quality
with a single network trained end-to-end comes at a prohibitive
resource cost.

We improve these three desirable properties in our outputs at
a reasonable resource cost by splitting the traditional single-GAN
setup into multiple smaller steps that can be trained and evalu-
ated separately. Synchronization across different steps using a low-
dimensional embedding of style ensures the consistency of outputs.
Additionally, the style embedding can be manipulated by the user,
giving control over the style distribution on a building, a block or
multiple blocks.

Figure 4 shows an overview of the steps performed to generate
facade and roof details. In the following, we assume that the user
is working on a block of buildings, but similar steps also apply to
multiple building blocks or a single building. First, the user defines
style distributions for the building block. Style distributions can
be provided for several building properties, such as facade texture,
roof texture, and window layouts. Each distribution is modeled as a
mixture of Gaussians in a low-dimensional style space, where the
user may choose n modes by providing n reference images (which do
not need to be consistent with the building shape or each other), and
optionally a custom variance. Each building in the block samples
one style vector from this distribution and uses it for all windows,
facades and the roof. Specifying styles gives more control over the
result, but is optional; the style for any building property can instead
be entirely random. Section 5.1 provides details.

After each building style is defined, two separate chains of GANs
with similar architectures generate the facade and roof textures,
as well as the corresponding label maps. Each GAN in the chain
performs image-to-image mapping based on BicycleGAN [Zhu et al.
2017b]. We extend this architecture with several conditional inputs,
including a mask of the empty facade or roof and several metrics
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Fig. 4. FRANKENGAN overview. Individual GANs are denoted by G, and yellow rectangles denote GAN chains or geometry generation modules. Given a mass
model and an optional style reference (any part can be replaced by a random style), the model is detailed in three steps. First, two chains of GANs generate

texture and label maps for facades and roofs. Then, the resolution of the generated textures is increased by a dedicated window generation chain and two
super-resolution GANs for roofs and facades. Finally, 3D details are generated for roofs, windows, and facades based on the generated textures and label maps.

describing the input, such as its approximate scale and a distance
transform of the input boundary. This information about the global
context makes it easier for a network that operates only on local
patches to make global decisions, such as generating details at the
correct scale, or placing objects such as doors at the correct height.
Details about the GAN architecture are provided in Section 4.

To generate facade textures and label maps, three of these GANs
are chained together, each performing one step in the construction
of the final facade details. The first GAN generates window labels
from a blank facade mask; the second GAN transform these labels
into the facade texture; and the final GAN detects non-window
labels in the facade texture to generate a second detailed label map.
Similar steps are performed for roof textures and label maps. As we
will show, this multi-step approach results in higher-quality details
compared to an end-to-end approach.

The resolution of the facade and roof textures is limited by the
memory requirements of the GANs. To obtain higher-resolution tex-
tures without significantly increasing the memory requirements, we
employ two strategies: first, since windows are prominent features
that usually exhibit fine details, we texture windows individually. A
GAN chain creates window-pane labels in a first step and window
textures from these labels in a second step. Second, we increase the
resolution of the roof and wall textures using a super-resolution
GAN applied to wall patches of fixed size. This GAN has the same
architecture as the GANs used in all other steps. Details on all GAN
chains are given in Section 5.2.

Finally, 3D geometric details are created based on the generated
label maps using procedural geometry , and the resulting detailed
mass models are textured using the generated textures. We also use
label maps and textures to define decorative 3D details and material
properties maps. Details are provided in Section 5.4. The source
code and pre-trained network weights are available from the project
webpage http://geometry.cs.ucl.ac.uk/projects/ 2018/ frankengan/.
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4 GAN ARCHITECTURE

Our texture and label maps are generated in multiple steps, where
each step is an image-to-image transformation, implemented with a
GAN. Traditional image-to-image GANSs such as Pix2Pix [Isola et al.
2017] can learn a wide range of image-to-image transformations, but
the variation of outputs that can be generated for a given input is
limited. Since we aim to generate multiple different output styles for
a given input, we base our GAN architecture on the recently intro-
duced BicycleGAN architecture [Zhu et al. 2017b], which explicitly
encodes the style in a low-dimensional style space and allows out-
puts to be generated with multiple styles. In this section, we briefly
recap the BicycleGAN setup and describe our modifications.
Image-to-image GANS train a generator function,

B=G(AZ): R" xRF - R", (1)

that transforms an input image A to an output image B. For example,
A might be an image containing color-coded facade labels, such as
windows, and B a corresponding facade texture. The second input Z
is a vector of latent variables that describe properties of the output
image that are not given by the input image, such as the wall color.
We call Z the style vector and the space containing Z the style space
Z. The embedding of properties into this space is learned by the
generator during training. Typically, Z is chosen to be random
during training and evaluation, effectively randomizing the style.
The generator’s goal is to approximate some desired but unknown
joint distribution p(A, B) by training it with known samples from
this distribution, in the form of two datasets A and B of matching
input/output pairs. For example, p(A, B) may be the distribution of
matching pairs of facade labels and facade textures. During gen-
erator training, the difference between the generated distribution
P(A, G(A, Z)) and the desired unknown distribution p(A, B) is mea-
sured in an adversarial setup, where a discriminator function D is
trained to distinguish between samples from the two distributions,
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Fig. 5. GAN architecture. The setup used during evaluation is shown in the
top row, and the training setup is shown in the bottom row. Dotted lines
denote random sampling.

with the following cross-entropy classification loss:

LEN(G. D) =E g pp(a )| ~log D(A, B)| +

EA B~p(A,B), Z~p(z)|—108(1 = D(A,G(4,2)))],
)
where p(Z) = N(0,I) is the prior over style vectors, defined to be
a standard normal distribution. The generator is trained to output
samples that are misclassified by the discriminator as being from
the desired distribution:

LENG.D) =By popa,B), z~pz)|~10g DA GA. 2)].  (3)

Additionally, an L1 or L2 loss term between the generated output
and the ground truth is usually included:

L11(G) = B4 pp(a,B), z~p(2)||B—GA 2)|,. )

In general, the conditional distribution p(B|A) for a fixed A may
be a multi-modal distribution with large variance; for example,
there is a wide range of possible facade textures for a given facade
label image. However, previous work [Isola et al. 2017] has shown
that in typical image-to-image GAN setups, the style vector Z is
largely ignored, resulting in a generator output that is almost fully
determined by A and restricting p(B|A) to have low variance. To
solve this problem, BicycleGAN uses an encoder E that obtains the
style from an image and combines additional loss terms introduced
in previous works [Donahue et al. 2016; Dumoulin et al. 2016; Larsen
et al. 2016] to ensure that the style is not ignored by the generator.

First, based on ideas from Variational Autoencoders [Kingma
and Welling 2014], the encoder outputs a distribution E(B) of styles
for each image instead of a single style vector. In Equations 2 to 4,
p(Z) = E(B) is used instead of the standard normal distribution. The
distribution E(B) is regularized to be close to a standard normal
distribution to encourage style vectors to form a large contiguous
region in style space that can easily be sampled:

Lx1(E) = Epp(3) [ Dxr(EB)IN(0, )], ®)

where D, is the KL-divergence. Second, the generator is encour-
aged not to ignore style by including a style reconstruction term:

LIR(E) = Bavpay, z-nio. D1 Z = E(GA 2))||,» (6)

where E denotes the mean of the distribution output by E. Intuitively,
this term measures the reconstruction error between the style given

Fig. 6. Additional input channels. GANs are conditioned on additional
channels that include information about the global context at each pixel.
Given a facade/roof mask, we include the distance to the facade boundary
and the distance to each bounding box side, making it easy for the network
to decide how far it is from the boundary and at what height on the facade.

to the generator as input and the style obtained from the generated
image. The full loss for the generator and encoder is then:

LY(G,D,E) = AganLEsn(G. D) + A1 L11(G) +
AKLLKL(E) + ALR LLR(E).

The hyper-parameters A control the relative weight of each loss. A
diagram of this architecture is shown in Figure 5.

FRANKENGAN trains a BicycleGAN for each individual step, with
one exception that we discuss in Section 5. In addition to style, we
also need to encode the real-world scale of the input mass model,
so that the output details can be generated in the desired scale. We
condition the GANSs on an additional constant input channel that
contains the scale of the facade in real-world units. This channel is
appended to A.

In our experiments, we observed that using this BicycleGAN setup
to go directly from inputs to outputs in each step often resulted
in implausible global structure, such as misaligned windows or
ledges on facades. The limited receptive field of outputs in both the
generator and the discriminator constrains coordination between
distant output pixels, making it difficult to create globally consistent
structure. Increasing the depth of the networks to increase the
receptive field alleviates the problem but has a significant resource
cost and destabilizes training. We found that conditioning the GANs
on additional information about the global context of each pixel
was more efficient. More specifically, we conditioned the GANs on
five additional channels that are appended to A: the distance in real
world units to each side of the bounding box and to the nearest
boundary of a facade or roof. Examples are shown in Figure 6.

™)

5 FRANKENGAN

Detail generation is performed by a cascade of textures and label
maps, as shown in Figure 4. These are generated by FRANKENGAN
in several separate chains of GANs, where each GAN is trained
and run independently. Splitting up this task into multiple steps
rather than training end-to-end has several advantages. First, we
can provide more guidance in the form of intermediate objectives,
for example window layouts, or low-resolution textures. In our
experiments, we show that such intermediate objectives provide a
significant advantage over omitting this guidance. While in theory
there are several ways to provide intermediate objectives for end-
to-end networks, for example by concatenating our current GANs,
this would result in extremely large networks, leading to the second
advantage of our approach: GAN training is notoriously unstable,
and training small GANs is more feasible than training large ones.
An end-to-end network with intermediate objectives would need to
have a very large generator with multiple discriminators, making
stable training difficult achieve. In addition, splitting the network
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Fig. 7. FRANKENGAN details. Each GAN chain (yellow rectangles) consists of several GANs (G) that each perform an image-to-image transformation. GANs are
usually conditioned on additional inputs (arrows along the bottom) and are guided by a reference style (arrows along the top). Label outputs are regularized

(R) to obtain clean label rectangles. Figure 4 shows these chains in context.

reduces resource costs during training. Instead of a single very large
network, we can separately train multiple smaller networks. Note
that training a very large network one part at a time would require
storing and loading parts of the network from disk in each forward
and backward pass, which is prohibitive in terms of training times.
Finally, using separate GANs, we can regularize intermediate results
with operations that are not are not differentiable or would not
provide a good gradient signal.

5.1 Style Control

One difficulty with using separate GANSs is achieving stylistically
consistent results. For example, windows on the same facade usu-
ally have a similar style, as do ledges or window sills. Style control
is also necessary beyond single roof or facade textures: adjacent
facades on a building usually look similar, and city blocks may have
buildings with similar facade and roof styles. A comparison of gen-
erated details with and without style control is given in Figure 8. In
FRANKENGAN, style can be specified for eight properties: the coarse
facade and roof texture, facade and roof texture details, such as brick
patterns, the window layout on the facade, the glass pane layout in
the windows, the window texture, and the layout of chimneys and
windows on a roof. The user can describe the style distribution of a
property over a building block with a mixture of isotropic Gaussians

user-specified

style distribution  style distribution

random

Fig. 8. Specifying a style distribution gives control over the generated details.
The top row shows three results generated with the same user-specified
style distribution, while the bottom row uses the style prior, giving random
styles. Note how the buildings in the top row have a consistent style while
still allowing for some variation (depending on the variance chosen by the
user), while the bottom row does not have a consistent style.
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in style space Z:
p(ZIS.0) = ) $iN(ES). o0), (®)
i=1

where Z € Z is the style vector, N is the normal distribution and
the weights ¢; must sum to 1. Z provides a compact representation
of style. We use an eight-dimensional style space in our experiments.
The means of the Gaussians are specified by encoding m style ref-
erence images S; € S with the encoder described in the previous
section. The variance o = (01, . . ., o) specifies the diversity of the
generated details and can be adjusted per reference image with a
slider. One of these distributions can be specified per property and
the styles are sampled independently.

In many cases, however, the styles of different properties are
dependent. For example, the color of roofs and facades may be
correlated. To specify these dependencies, several sets of property
distributions may be specified, each set S; = {(Sp, 0p)}p=1...5 con-
tains one mixture model per property p. For each building, one of
these sets is chosen at random. The special case of having a single
Gaussian (m = 1) per property in each set effectively gives a Gauss-
ian mixture model over the joint space of all properties, with each
set being one component. The user does not need to provide the
style for all properties. Any number of properties may be left un-
specified, in which case the style vector is sampled from the GAN’s
style prior, which is a standard normal distribution.

5.2 Detail Generation

FRANKENGAN uses five chains of GANSs, which can be split into two
groups: two chains for generating initial coarse details (textures and
label maps) for roofs and facades, and three chains for increasing
the resolution given the coarse outputs of the first group. Details
of these chains are shown in Figure 7. Most of the chains have
intermediate results, which are used for the geometry synthesis that
we will describe in Section 5.4. Each GAN takes an input image and
outputs a transformed image. In addition to the input image, all
GAN s except for the super-resolution networks are conditioned on
the scale and context information described in the previous section,
making it easier to generate consistent global structure. Each GAN is
also guided by a style that is drawn from a distribution, as described
above. Figure 7 shows reference images S; that are used to specify
the distribution. Images output by GANs are either label maps L,
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Fig.9. Super-resolution. Given inputs (green, magenta), the super-resolution
network creates high-quality textures for the walls, while the window GAN
chain provides high-quality windows. Note that the window label and
window texture networks each run once for every window.

or textures T. Each label map output by a GAN is passed through a
regularizer R, denoted by the red rectangles in Figure 7, to produce
a clean set of boxes R(L) before being passed to the next step. We
now describe each chain in detail. The regularizers are described in
Section 5.3.

Roofs. The roof chain generates roof detail labels and the coarse
roof texture. The chain starts with a coarse label map of the roof
as the input image. This label map includes ridge and valley lines
of the roof, which are obtained directly from the mass model. Flat
roofs are labeled with a separate color. The first GAN adds chimneys
and pitched roof windows. These labels are regularized and then
used by the second GAN to generate the coarse roof texture.

Facades. The facade chain generates window labels, full facade
labels, and the coarse facade texture. Window labels are generated
separately from the full labels, since they may be occluded by some
of the other labels. The first GAN starts by creating window and
door labels from facade boundaries. These are regularized before
being used as input in the second GAN to generate the coarse facade
texture. The third GAN detects the full set of facade labels from the
facade texture, including ledges, window sills, and balconies, which
are also regularized to give a cleaner set of labels. The third GAN
has a different architecture: since we expect there to be a single
correct label map for each facade texture, we do not need style
input, which simplifies the GAN to the Pix2Pix architecture [Isola
et al. 2017]. Since the window and door labels are known at this
point, we also condition this GAN on these labels. Detecting the full
label set from the facade texture instead of generating it beforehand
and using it as input for the texture generation step is a design
choice that we made after experimenting with both variants. Detail
outlines in the generated texture tend to follow the input labels very
closely, and constraining the details in this way results in unrealistic
shapes and reduced variability. For all three GANSs, areas occluded
by nearby facades are set to the background colour; this ensures that
the feature distribution takes into account the nearby geometry.

Since the layout of dormer windows needs to be consistent with
the facade layout, we create these windows in the facade chain. More
specifically, we extend the input facade mask with a projection of
the roof to the facade plane. This allows us to treat the roof as part
of the facade and to generate a window layout that extends to the
roof. Roof features (chimneys or pitched windows) that intersect
dormer windows are removed.

Windows. To obtain high-resolution window textures, we apply
the window chain to each window separately, using a consistent
style. Each window is cut out from the window label map that was
generated in the facade chain, and scaled up to the input resolution
of the GAN. The steps in the window chain are then similar to those
in the roof chain. We generate glass pane labels from the window
region, regularize them, and generate the high-resolution window
texture from the glass pane labels.

Super-resolution. High-resolution roof and facade textures are
obtained with two GANS that are trained to generate texture detail,
such as bricks or roof tiles from a given low-resolution input. Roof
and facade textures are split into a set of patches that are processed
separately. Each patch is scaled up to the input size of the GANs
before generating the high-resolution output. Consistency can be
maintained by fixing the style for the entire building. The output
patches are then assembled to obtain the high-resolution roof and
facade textures. Boundaries between patches are blended linearly
to avoid seams. Examples are shown in Figure. 9. Our interleaved
GANs allow us to augment the super-resolution texture map with
texture cues from the label maps. For example, window sills are
lightened, and roof crests are drawn; these augmentations take the
form of drawing the labels in a single colour with a certain alpha.
Note that because of the large scale of the super-resolution bitmaps,
we explicitly state which figures use these two networks.

5.3 Regularizers

Our GANSs are good at producing varied label maps that follow the
data distribution in our training set. Alignment between individual
elements is, however, usually not perfect. For example, window sills
may not be rectangular or have different sizes in adjacent windows,
or ledges may not be perfectly straight. Although the discrepancy is
usually small, it is still noticeable in the final output. Our multi-step
approach allows us to use any non-differentiable (or otherwise) reg-
ularization. We exploit domain-specific knowledge to craft simple
algorithms to improve the alignment of the label maps. We then
provide 3D locations for geometric features. In the following, we
describe our regularizers in detail.

Roof detail labels. Chimneys and pitched roof windows are reg-
ularized by fitting circles to the network output. These are then
converted to rectangles, which may be oriented to the roof pitch,
see Figure 10, top row. We take the center of each connected compo-
nent of a given label and use its area to estimate a circle size. Smaller
circles are removed before we convert each to a square. We observe
that roof features such as chimneys and roof windows are typically
aligned to the roof’s slope. We therefore orient the bottom edge of
each feature to the gutter of the associated roof pitch. Finally, we
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fitted primitives

network output

regularized

Fig. 10. Regularization. All our label maps are regularized before being used
by the next GAN in the chain. Rows: roof details, facade windows, facade
details, and window details (regularized with an outer product).

shrink it so that it lies entirely within a single roof pitch and avoids
dormer windows.

Facade window and door labels. The window and door layout on
a facade has to be regularized without removing desirable irregular-
ities introduced by the GAN that reflect the actual data distribution,
such as different window sizes on different floors, or multiple over-
layed grid layouts. We start by fitting axis-aligned bounding boxes
to doors and windows (see Figure 10, second row center). Then we
collect a set of properties for each window, including the x and y
extents and the spacing between neighbours, over which we per-
form a mean-shift clustering. We use a square kernel of size 0.4
meters for each property, until convergence or a maximum of 50
mean-shift iterations. This ensures that these properties can have a
multi-modal distribution, which preserves desirable irregularities,
while also removing small-scale irregularities (see Figure 10, second
row right).

Facade detail labels. Since adjacent details are often not perfectly
aligned, we snap nearby details, such as window sills and windows
to improve the alignment. We also observed that in the generated
label map, the placement of small details such as window sills and
moldings is sometimes not coordinated over larger distances on the
facade. To improve regularity, we propagate details such as window
sills and moldings that are present in more than 50% of the windows
in a row to all remaining windows (see Figure 10, third row).
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Fig. 11. Generated window textures and labels are merged back into the
facade texture, increasing fidelity of window textures, normals and materials.
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Window detail labels. The glass pane layout in a window is usually
more regular than the window layout on facades, allowing for a
simpler regularization: we transform the label map into a binary
glass pane mask and approximate this 2D mask by the outer product
of two 1D masks, one for the columns, and one for the rows of the
2D mask. This representation ensures that the mask contains a grid
of square glass panes. The two 1D masks are created by taking the
mean of the 2D mask in the x- and y-directions, and thresholding
them at 0.33. An example is shown in Figure 10, bottom row.

5.4 Geometry Synthesis

As output of the five GAN chains, we have high-resolution roof,
facade, and window textures, as well as regularized label maps for
roof details, facade details, and window panes. These are used to
generate the detailed mass model. First, geometry for details is
generated procedurally based on the label maps. For details such as
window sills and ledges, we use simple extrusions, while balconies
and chimneys are generated with small procedural programs to fit
the shape given by the label map.

To apply the generated textures to the detailed mass models,
UV maps are generated procedurally along with the geometry. In
addition to textures, we also define building materials based on the
label maps. Each label is given a set of material properties: windows,
for example, are reflective and have high glossiness, while walls
are mostly diffuse. To further increase the fidelity of our models,
textures and label maps are used to heuristically generate normal
maps. The intensity of the generated texture is treated as a height
field that allows us to compute normals. While this does not give us
accurate normals, it works well in practice to simulate the roughness
of a texture. Per-label roughness weights ensure that details such as
glass panes still remain flat. Finally, generated window textures and
label maps are merged back into the facade textures; an example is
given in Figure 11.

5.5 User interface

Our system contains a complete framework for interactively using
FRANKENGAN. A user may select an urban city block, specify a
distribution, and then the system adds the additional geometry and
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Fig. 12. The distribution designer Ul (see supplemental video). Given a style distribution (a), the system continuously shows evaluations of that distribution (c).
By clicking on an image, the user can see the network inputs (b). Different networks can be selected (d). The style distribution for any network is a Gaussian
mixture model that may have multiple modes (e), the mean of which is given by an exemplar image.

textures to the 3D view. At this point, the user can edit semantic
details (such as window locations), while seeing texture updates in
real time. Of note is our interface to build our joint distributions (Fig-
ure 12), which continually shows the user new examples drawn from
the current distribution. The accompanying video demonstrates the
user interface.

6 RESULTS

We evaluate our method on several scenes consisting of procedurally
generated mass models. We qualitatively show the fidelity of our
output and the effects of style and scale control. Style and scale
control are also evaluated quantitatively with a perceptual study,
and we provide comparisons to existing end-to-end networks, both
qualitatively and quantitatively through another perceptual study.

6.1 Datasets and Training Setup

Each GAN in our framework performs an image-to-image transfor-
mation that is trained with a separate dataset of matched image pairs.
Matched images for these pairs are obtained from three datasets:
The facade dataset consists of the CMP dataset [Tylecek and Sara
2013] and a larger dataset of labeled facades that has not yet been
released, but that has been made available to us by the authors.
The combined dataset contains 3941 rectified facades with labels
for several types of details, including doors, windows, window sills,
and balconies. We further refined this dataset by removing heavily
occluded facades and by annotating the height of a typical floor
in each facade to obtain the real-world scale that our GANs are

super-res

conditioned on, as described in Section 4. From this dataset, we
create matched pairs of images for each GAN in the facade chain.

The roof dataset consists of 585 high-quality roof images with
labeled roof area, ridge/valley lines, pitched windows and chimneys.
The images are part of an unreleased dataset. We contracted pro-
fessional labellers to create high-quality labels. From this dataset,
we created matched pairs of images for the two GANSs in the roof
chain.

The window dataset contains 1376 rectified window images with
labeled window areas and glass panes. These images were obtained
from Google Street View, and high-quality labels were created by
professional labellers. From this dataset, we created matched pairs
of images for the two GANSs in the window chain. Examples from
all datasets are shown in Figure 13.

In addition to these three datasets, the super-resolution GANs
were trained with two separate datasets. These datasets were cre-
ated from a set of high-quality roof/wall texture patches that was
downloaded from the internet, for example, brick patterns or roof
shingles, and blurring them by random amounts. The networks are
then trained to transform the blurred image to the original image.
We found that it increased the performance of our networks to add
in a second texture at a random location in the image. This accounts
for changes in the texture over a facade or roof that occur in natural
images.

To train each GAN, we alternate between discriminator opti-
mization steps that minimize Eq. 2 and generator/encoder optimiza-
tion steps that minimize Eq. 7. The optimization is performed with
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Fig. 14. Detailed London area. The output of our method is shown on top, and the input style images at the bottom left. This is followed, from left to right, by

i S

close-ups of the input mass models, detail geometry generated by our method, and two detailed views of the generated model using super-resolution textures.

Table 1. GAN statistics: the size of the training data (n), resolution (in pixels
squared), number of epochs trained, and if the network takes style as input.

n resolution epochs  style
roof labels 555 512 400 yes
roof textures 555 512 400 yes
facade window labels 3441 256 400 yes
facade textures 3441 256 150 yes
facade full labels 3441 256 335 no
window labels 1176 256 200 yes
window textures 1176 256 400 yes
facade super-resolution 2015 256 600 yes
roof super-resolution 1122 256 600 yes

Adam [Kingma and Ba 2015]. The weights (Agan, AL1, AKL, ALR) in
Equation 7 are set to (1, 10,0.01,0.5). A large Ar; encourages results
that are close to the average over all training images. This helps to
stabilize training for textures. For label map generation, however,
there is usually one dominant label, such as the wall or the roof
label, and a large L1 loss encourages the generation of this label
over other labels. Lowering the L1 loss to 1 improves results for
label maps. Statistics for our GANs are summarized in Table 1.

At test time, we evaluate our networks on mass models created
through procedural reconstruction from photogrammetric
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meshes [Kelly et al. 2017]. Facades and roofs on these mass models
are labeled, and roof ridges and valleys are known, providing all
necessary inputs for FRANKENGAN: facade masks and coarse roof
label maps. Note that it obtaining these inputs automatically from
any type of reasonably clean mass model, is also feasible.

6.2 Qualitative Results

We show the quality of our results with one area of Madrid and
one area of London, both spanning several blocks. As our reference
style, we take images of facades, windows and roofs, some of which
are taken from our dataset, and some from the web. Figures 1 and
14 show the result of detailing the London scene. Reference style
textures and input mass models are shown on the left, our detailed
result on the right. We produce varied details that are not completely
random, but guided by the style given as input. In this example,
several sets of style textures are used. Note the varied window
layouts and textures: each building has unique layouts and textures
that are never repeated.

Figure 15 shows our results of detailing the Madrid scene. Refer-
ence style images and a detailed view of the input mass models are
shown on the left; our output is shown in the center and on the right,
including a detailed view of the generated geometry. Note several
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Fig. 15. Detailed Madrid area. Input style images and mass models are shown on the left, an overview of our output in the center, and close-ups of our output
and the generated geometry (green), showing details like balconies and window moldings, on the right. Lower right panel uses super-resolution textures.

Table 2. Statistics for the London and Madrid scenes. We show the number
of roofs, facades and windows in each block, as well as the time taken to
generate the block.

LoNDON MADRID
block roofs facades windows time(s) block roofs facades windows time(s)
1 29 145 1075 490 1 22 146 773 315
2 20 204 541 351 2 20 110 559 239
3 15 87 536 222 3 17 103 471 219
4 25 133 1040 400 4 12 67 399 166
5 47 243 2107 809 5 7 66 230 102
6 27 171 1622 597 6 22 116 758 291
7 10 65 1144 403 7 25 139 571 292
8 7 40 559 199 8 22 125 611 255
9 8 42 786 271 9 35 240 1219 495
10 26 158 1566 577 10 37 222 738 350

total 214 1288 10976 4322 total 219 1334 6329 2722

modes of matching styles in the result, including red buildings with
black roofs and yellow buildings that often have several ledges.
Statistics for the London and Madrid scenes are shown in Table 2.
Each of the scenes has 10 blocks and contains an average of 21
buildings (the number of buildings equals the number of roofs). All
of the generated details, including their textures, are unique in the
entire scene. In the London scene, we generate approximately 860
Megapixels of texture and 2.68 million triangles; in the Madrid scene
we generate approximately 560 Megapixels and 1.17 million trian-
gles. The time taken to generate the scenes on a standard desktop
PC with an Intel 7700k processor, 32 GB of main memory, and an
NVidia GTX 1070 GPU is shown in the last column of Table 2. The
FRANKENGAN implementation has two modes - when minimizing
GPU memory, a single network is loaded at a time, and all applicable
tasks in a scene are batch processed; when GPU memory is not a
constraint, the whole network can be loaded at once. These modes
use 560 MB and 2371 MB of GPU memory, respectively, leaving
sufficient space on the graphics card to interactively display the

textures. These figures compare favourably with larger end-to-end
networks that require more memory [Karras et al. 2018].

6.3 Qualitative Comparisons

In this section, we qualitatively evaluate the style control of FRANKEN-
GAN and compare our results to two end-to-end GANSs: Pix2Pix [Isola
et al. 2017] and BicycleGAN [Zhu et al. 2017b]. Similar quantiative
evaluations and comparisons, based on two perceptual studies, are
provided in the next section.

To evaluate the effects of style control on our outputs, we compare
four different types of style distributions applied to similar mass
models in Figure 16. On the left, a constant style vector is used for
all houses. This results in buildings with similar style, which may,
for example, be required for row houses or blocks of apartment
buildings. A fully random style is obtained by sampling the style
prior, a standard normal distribution. The diversity in this case
approximates the diversity in our training set. Using a Gaussian
mixture model (GMM) as the style distribution, as described in
Section 5.1, gives more control over the style. Note the two modes
of white and red buildings in the third column, corresponding to two
reference style images. The style for different building properties,
such as roof and facade textures, is sampled independently, resulting
in randomly re-mixed property styles, both white and red facades,
for example, are mixed with black and red roofs. When specifying
multiple sets of GMMs, one set is randomly picked for each house,
allowing the user to model dependencies between property styles,
as shown in the last column.

Examples of different super-resolution styles are shown in Fig-
ure 17. Since a low-resolution texture contains little information
about fine texture detail, like the shingles on a roof or the stone

ACM Trans. Graph., Vol. 37, No. 6, Article 1. Publication date: November 2018.



1:12 « Tom Kelly, Paul Guerrero, Anthony Steed, Peter Wonka, and Niloy J. Mitra

independent

constant random

properties

dependent
properties

Fig. 16. Different types of style distributions. From left to right, a constant style is used for all houses, a style chosen randomly from the style prior, a style
sampled independently for all building properties, and a dependently sampled property style. Note that in the last two columns, there are several separate
modes for properties, such as wall and building color, that are either mixed randomly for each building (third column) or sampled dependently (last column).

texture on a wall, there is a diverse range of possible styles for this
fine texture detail, as shown in the middle and right building.
Figure 18 shows a qualitative comparison to Pix2Pix and Bicy-
cleGAN. We trained both end-to-end GANSs on our facade and roof
datasets, transforming empty facade and roof masks to textures in
one step. As discussed in Section 4, Pix2Pix, like most image-to-
image GANSs, has low output diversity for a given input image. In
our case, the input image, being a blank facade or roof rectangle,
does not provide much variation either, resulting in a strong mode
collapse for Pix2Pix, shown by the repeated patterns such as the
‘glass front’ pattern across multiple buildings. Like FRANKENGAN,
BicycleGAN takes a style vector as input, which we set to a similar
multi-modal distribution as in our method. There is more diversity
than for Pix2Pix, but we observe inconsistent scale and style across
different buildings, or across different facades of the same building,
less realistic window layouts, and less diversity than in our results.
Splitting the texture generation task into multiple steps allows us
to provide more training signals, such as an explicit ground truth
for the window layout, without requiring a very large network,
regularize the intermediate results of the network and then use
the intermediate results as label maps that can be used to generate

Fig. 17. Different super-resolution styles. The original low-resolution facade
and roof textures are shown on the left; the middle and right buildings show
two different super-resolutions styles, resulting in different textures for the
roof tiles or stone wall.
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geometric detail and assign materials. Additionally, giving the user
more precise control over the style results in more consistent details
across a building or parts of buildings. This allows us to generate
more diverse and realistic building details. In the next section, we
quantify the comparison discussed here with a perceptual study.

6.4 Perceptual Studies

We performed two perceptual studies to quantify the following
questions:

(A) How visible are the effects of style and scale control?
(B) How does the realism of FRANKENGAN compare with that of
Pix2Pix [Isola et al. 2017] and BicycleGAN [Zhu et al. 2017b]?

To investigate question A, we tested if participants could reliably
tell which of two generated facades was guided by a given reference
style facade. The style and scale was randomized for the other
facade. Question B was investigated by comparing facades generated
by FRANKENGAN and one of the other two methods side-by-side
and asking participants to compare the realism of the two facades.
We performed both studies in Amazon Mechanical Turk (AMT).
Screenshots of both studies are shown in Figure 19; the assignment
of images to the left and right positions was randomized.

For study A, we created 172 triples of facades, each consisting of a
reference facade, a facade with style and scale given by the reference
facade, and a third facade with randomized style. Participants were
asked which of the two facades was more similar to the reference.
Each triple was evaluated by an average of 11 participants, and a total
of 116 unique participants took part in the study. Figure 19 (green vs.
blue) shows the average probability of a participant choosing either
the style-guided facade or the facade with randomized style as more
similar to the reference facade. Our results show that style-guided
facade was consistently chosen, implying good visibility of style
and scale control.

The second study was performed in two parts. In the first part, we
compare our method to Pix2Pix, and in the second part to Bicycle-
GAN. Users were shown one facade generated with FRANKENGAN
and one facade with the other method, trained end-to-end to trans-
form facade masks to facade textures. Each pair was evaluated by
an average of 17.6 and 17.5 users, for Pix2Pix and BicycleGAN,
respectively, and there were 86 unique participants in the study.
Results are shown in Figure 19 (red vs. blue and yellow vs. blue).
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Pix2Pix BicycleGAN

Fig. 18. Qualitative comparison with end-to-end GANSs. The left column shows results of Pix2Pix trained to transform empty facade and roof masks to textures.
The middle column shows BicycleGAN trained similarly, while the last column shows our method. Note how Pix2Pix suffers from mode collapse, while
BicyleGAN has less realistic window layouts and lacks scale and style consistency. FRANKENGAN provides better style control and our approach of splitting up
the problem into multiple steps opens up several avenues to increase the realism of our models.

FRANKENGAN was chosen as more realistic in 66.6% of the compar-
isons with Pix2Pix and 57.6% of the comparisons for BicycleGAN.
95% confidence intervals are shown as small bars in Figure 19. Note
that this advantage in realism is in addition to the advantage of of
having fine-grained style and scale control and obtaining label maps
as intermediate results that are necessary to generate 3D details.

6.5 Limitations

There are also some limitations to our framework. To replicate the
framework from scratch requires extensive training data. Similar
to other GANS, our results look very good from a certain range of
distances, but there is a limit to how close it is possible to zoom in
before noticing a lack of details or blurriness. This would require
the synthesis of displacement maps and additional material layers in
addition to textures. Data-driven texturing is inherently dependent
on representative datasets. For example, our facade label dataset
had missing windows due to occlusions by trees and other flora. We
thus occasionally see missing windows in our results. We chose not
to fill in windows in the regularisation stage. The facade-texturing
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Fig. 19. Perceptual studies comparing our method with/without style guid-
ance (left) and to Pix2Pix [Isola et al. 2017] and BicycleGAN [Zhu et al.
2017b] (middle). The average probability for each method of being judged
more similar to the reference or more realistic by the study participants is
shown on the right. The black bars are 95% confidence intervals.
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network then learned to associate these missing windows with flora,
and dutifully added green "ivy" to the building walls (Figure 20, left).
Finally, our system uses a shared style to synchronize the appearance
of adjacent building facades. However, this compact representation
does not contain sufficient detail to guarantee seamless textures at
boundaries (Figure 20, right).

7 CONCLUSION

We presented FRANKENGAN, a system for adding realistic geomet-
ric and texture details on large-scale coarse building mass models
guided by example images for style. Our system is based on a cas-
caded set of GANs that are individually controlled by generator
vectors for style synchronization. We evaluated our system on a
range of large-scale urban mass models and qualitatively evaluated
the quality of the detailed models via a set of user studies.

The most direct way to improve the quality of output generated
by FRANKENGAN is to retrain the GANs using richer and more
accurately annotated facade and roof datasets and also to extend
the system to generate street textures and furniture, as well as
trees and botanical elements. This is a natural improvement as

Fig. 20. Limitations. Green: the system is prone to generating green vegeta-
tion over missing windows. Red: texture discontinuities at boundaries.
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many research efforts are now focused on capturing high quality
facade data with improved quality annotations. A more non-trivial
extension is to explore a GAN-based approach that directly gener-
ates textured 3D geometry. The challenge here is to find a way to
compare rendered procedural models with images based on pho-
tographs that also includes facade structure rather than just texture
details. Finally, it would be interesting to combine our proposed
approach to author both realistic building mass models along with
their detailing directly from rough input from the user in the form
of sketches [Nishida et al. 2016] or high-level functional specifica-
tions [Peng et al. 2016].
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