How Do Users Map Points Between Dissimilar Shapes?
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Fig. 1. We investigate how people map points between dissimilar shapes (left) and show that our findings can be used to define
statistical models that allow us to transfer individual objects, like trees (middle), and/or procedural content, like ponds, forests and
flowers (right), between dissimilar shapes.

Abstract— Finding similar points in globally or locally similar shapes has been studied extensively through the use of various point
descriptors or shape-matching methods. However, little work exists on finding similar points in dissimilar shapes. In this paper, we
present the results of a study where users were given two dissimilar two-dimensional shapes and asked to map a given point in the
first shape to the point in the second shape they consider most similar. We find that user mappings in this study correlate strongly
with simple geometric relationships between points and shapes. To predict the probability distribution of user mappings between any
pair of simple two-dimensional shapes, two distinct statistical models are defined using these relationships. We perform a thorough
validation of the accuracy of these predictions and compare our models qualitatively and quantitatively to well-known shape-matching
methods. Using our predictive models, we propose an approach to map objects or procedural content between different shapes in

different design scenarios.

Index Terms—2D mappings, Shape matching, Shape similarity, Transformations, User studies.

1 Introduction

In this work, we aim at characterizing the geometrical proper-
ties of intuitively similar points in dissimilar two-dimensional
shapes. More precisely, our goal is to find a correlation be-
tween the position of similar points picked by humans on the
one hand, and simple geometric relationships between these
positions and the containing shapes on the other hand. Such
relationships include the distance to the closest shape bound-
ary, or the local coordinates of the shape normalized to the
bounding box, for instance.

Finding similar points in globally or locally similar shapes
has been studied extensively through the use of various point
descriptors or shape matching methods. However, little work
exists on finding similar points in dissimilar shapes. While this
problem does not always have a clear solution, as illustrated
in Figure 2, most humans have an intuition as to which points
are more similar than others. Studying this type of similarity
can guide point-matching methods needed for applications like
texture transfer, the propagation of edit operations between
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dissimilar shapes, or learning scene layouts by example.

In this paper, we describe a study where users were given two
dissimilar two-dimensional shapes and asked to map a given
point in the first shape to the point in the second shape they
consider most similar. Overall, the study consists of 2,000 such
triples each made up of a point and a shape pair, with a total
of 40,000 individual trials generated by users. The resulting
point distributions can be used to study the correlation be-
tween user-placed points and their geometric relationships to
a shape (Sections 4.1) and to develop new methods to map
points between dissimilar shapes (Section 4.2) by training sta-
tistical models that perform better than well-known methods
(Section 5.2). Furthermore, we develop algorithms that exploit
the higher accuracy of our models to map content between dif-
ferent shapes (Section 6). An example is given in Figure 1.

In our analysis of the point distributions, we found that
users agree strongly in their point placements, even though
the shapes are dissimilar. Our experiments also suggest that
user mappings can be predicted by simple statistical models,
and that models which handle interactions between relation-
ships (e.g., point is close to a corner and far away from the
centroid) perform much better than those that do not.

This work makes the following main contributions:

e A dataset with a total of 2,000 distinct point mappings
between all pairs of 28 two-dimensional shapes, performed
by 20 different users each.

e Results showing the correlation of similar points picked by
users and simple geometric relationships between the points
and the containing shape.

e An analysis of the predictive performance of current well-
known methods.



Fig. 2. When mapping the red point on the left to the two dissimilar
shapes on the right, there may be no clear best placement, illustrated
by multiple red points in the rightmost shape. However, some points
(red) are intuitively more similar than others (green).

e Two distinct statistical models to predict the probability
of a user picking a particular point in a shape.

e An approach based on these statistical models to map ob-
jects and procedural content between shapes.

Overall, our study provides an empirical foundation for us-
ing simple geometric relationships as basic building blocks for
mapping points between dissimilar shapes.

2 Related Work

Shape matching and mapping Several types of generalized
coordinates for arbitrary planar polygons have been presented
that can be used to map a point in one shape to a point with
the same coordinates in a second shape. Mean-value coordi-
nates [8, 16] are a generalization of barycentric coordinates
that retain a number of desirable properties such as smooth-
ness and invariance to similarity transformations. Harmonic
coordinates [17] are always positive, even for concave polygons,
but less simple and efficient to compute. Green coordinates [21]
relax the constraint that points remain inside the polygon after
the mapping in favor of a conformal or quasi-conformal map-
ping. However, all these coordinates require that the polygons
have the same number of vertices, which is not the case in our
shapes. Additionally, they map a point in the first shape to a
single point in the second shape, which makes them less useful
for predicting the response of users, which is often multimodal,
as we will see later.

Another approach to map points between shapes is through
partial shape matching, where transformations are found that
match the local geometry surrounding the given point to some
part of the second shape. These transformations can then be
applied to the given point to find similar points. Several meth-
ods have been presented, ranging from simple point descriptors
such as Shape Contexts [1] to more complex approaches based
on minimizing some shape deformation induced by the trans-
formation [11, 22, 26]. However, all of these approaches are
based on finding local similarities of the shapes, which are not
present in our case.

Guerrero et al. [12] presented a method to find similar points
in dissimilar shapes based on simple geometric relationships
between the points and the shapes. We take the geometric re-
lationships introduced in that work and study their correlation
to similar points in dissimilar shapes picked by users.

Psychology The perception of similarity has a long history
in various fields of psychology, psychophysics and neuroscience,
for instance, to investigate the effect of high-level (object parts)
and low-level (motion, texture, or luminance contrasts) visual
cues, as well as visual cues in the perception and recognition
process [10, 19]. Further research has focused on the ability
to recognize objects over various viewing conditions [2, 24, 28]
or the recognition of specific shapes like human body parts
[14, 23].

In this work we focus on the similarity of points in dissim-
ilar simple 2D shapes and examine if geometric relationships
between these points and their containing shapes can be used
to model this similarity.

Methodology Several recent publications investigated sim-
ilar research questions through user studies [5, 18]. Our
methodology and evaluation is mostly inspired by the works of
Chen et al. [3], Cole et al. [4] and McCrae et al. [25]. Cole et al.
performed a study to investigate where artists draw lines to
convey the shape of a 3D object through a 2D line drawing
and trained a statistical model to predict these drawings. A
user study was also used by McCrae et al. [25] to investigate
how 3D shapes can be best represented by planar slices that
match user preferences. This is achieved by fitting the param-
eters of the presented algorithm based on user data. A related
problem was addressed by Chen et al. [3]. The aim of their
work was to evaluate which points are most salient to users in
3D shapes and how to predict them by an analytic model.

The high-level approach of these works is quite similar in
that statistical models are trained based on user data to predict
user responses. Our methodology is also based on this principal
setup, but we additionally compare two distinct models in their
capabilities to predict user mappings in simple 2D shapes.

We use our models in different example-based design scenar-
ios like placing a certain amount of objects at the most prob-
able positions or placing objects only if the probability is high
enough. The algorithms presented in this paper are therefore
closely related to similar works like [6, 20, 27], but our approach
is driven by the data of our user study, and opens up new fields
of application.

3 Study Design

The main goal of this work is to understand how people map
points between dissimilar shapes. In particular, we want to
investigate which geometric factors influence a user’s decision
when mapping a single point (query point) from within one
shape (source shape) to another shape (target shape). To this
end, design decisions have to be made with respect to the
shapes used in the study (Section 3.1), placement of query
points within those shapes (Section 3.2), and the way the data
is collected (Section 3.3).

3.1 Shapes

There are several geometric details of shapes that can poten-
tially guide a user’s mapping of a query point from one shape
to another, like corners, edges, or the whole boundary of source
and/or target shape. Semantics of a shape, for example when
mapping points between two face-like shapes, might also be a
critical factor influencing a user’s decision, but in this work we
focus solely on the analysis of geometric factors. We also do
not make any assumptions about how symmetries may affect
the results (e.g., we do not prune points that are at symmetric
locations in a shape), since we cannot know which symmetries
the users would actually take into account (point symmetries,
rotational symmetry, etc.). Therefore, we need to select a rea-
sonable subset of shapes that can cover many possible config-
urations of geometric details and that also allows the user to
focus on clearly recognizable geometric details. We hence make
the following design decisions with regard to the shapes used
in this study (see also Figure 3):

e Simplicity: To ensure that users are not overwhelmed by
the amount of geometric detail and are not tempted to ab-
stract fine details, shapes have to be kept relatively simple.

e Coverage: All shapes should be easily distinguishable by
users and should contain different combinations and num-
bers of geometric details. This means that no shape can be
the product of simple transformations from any other shape.
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Fig. 3. The 28 shapes and the query points used in the study. Manually placed query points are shown in red, randomly placed points in blue.

e Semantics: As mentioned before, analyzing the effect of
semantics is not the aim of this work. Hence we prefer
abstract over semantically meaningful shapes to ensure that
users base their decisions primarily on geometric properties.
For the same reason, we avoid colors and textures in our
shapes. Although we focus on geometry only, applications
using our method could add semantics in a separate step.

In total, 28 shapes were used in our study. To bring all shapes
into a common size range, we normalize them based on their
bounding box diagonal. Although we selected simple shapes,
we were able to apply our study results to more complex shapes
to facilitate the reuse of assets in content creation. Example
applications can be found in Section 6.

3.2 Query Points

Another important design decision concerns the placement of
query points within shapes. Each shape can have several places
of interest (near corners, near the centroid, on symmetry axes,
exactly between two opposite boundaries, at a certain distance
to a feature) where we would expect query points to result in
more consistent user mappings compared to randomly placed
query points. In a pure random sampling strategy, we would
require too many sample points to ensure that these places are
adequately sampled. Therefore, we place query points in two
steps. In the first step, we place them manually at the places
of interest mentioned above, and in the second step, we place
them randomly with a uniform probability inside the shape.
Because this random placement can lead to an inefficient sam-
pling of a shape, we use a Poisson-disk like sampling strategy:
we introduce a minimal distance condition for a newly placed
random point to all previously added points, which is 0.08 times
the diagonal of the bounding box of the shape. In case this con-
dition prevents the random placement to converge (the shape
cannot contain the predefined number of query points), the
minimal distance is reduced by a factor of 0.9 and the random
placement process is repeated until a valid result can be found.
We choose to place a total of 20 query points per shape (see
Figure 3), with 7.32 placed manually and 12.68 randomly on
average (o = 0.77).

3.3 Data Collection

The study was carried out online via Amazon Mechanical Turk.
The source and target shape were shown side by side with a
random query point shown in the source shape as discussed
above. Participants were asked to mark one position inside the
target shape they consider the most similar to the query point
in the source shape.

Using all 28 x 27 possible shape pairs, each with 20 query
points, was not feasible (given a reasonable budget), as we
would get too few participant trials per query point and shape
pair for meaningful results. Instead, we decided to randomly
pick from all possible 15,120 combinations a subset of 2,000
(583 containing a manually placed query point). Reduced
variance and a more even sampling of our space of possible
combinations was obtained by using a quasi-random Halton
sequence [13] when choosing this subset. For each shape-
pair combination, an average of 2.55 query points were picked
(o0 =1.04).

In total, 670 anonymous participants completed 40,000 trials
with a median number of 20 finished trials per participant. The
20% of the most active participants were accountable for 74%
of the gathered data.

3.4 How much do participants agree?

To understand whether the study provides a consistent basis
for further analysis, we examine how much participants agree
in their mappings. As a basis for our measure, we compute
the average pair-wise Euclidean distance between the points
of a query point mapping and normalize this value by using a
generalized version of Fleiss’ Kappa [7]:
Ro = ot (1)
Amax — Arand
where a is the participant agreement, amq. is the maximum at-
tainable agreement, and a,qnq is the agreement of points placed
randomly into the target shape. It measures the agreement
above chance relative to the maximum attainable agreement
above chance. Thus, with our definition of agreement, we get:
K = D _Dmmd7 (2)
_D7'and
where D is the average pair-wise distance in the set of points
placed by the participants inside a target shape, and Diqnd
the average pair-wise distance of the same number of points
placed randomly inside the target shape. To reduce variance,
we compute D,ana for several sets of random points (20 in our
evaluations) and take the average. Intuitively, the maximum
agreement of Kk = 1 is reached if all participants placed the
point at the exact same position, x = 0 is chance agreement
and k < 0 is systematic disagreement (more disagreement than
can be expected by chance). Note that multiple modes have a
higher s than a single mode, but still a lower x than a random
placement, since the distances between the points in each mode
are low.
The distribution of x among participants in our dataset is
depicted on the top of Figure 4. Agreement is 0.61 on average
and well above 0 for most queries. Examples for several values
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Fig. 4. The distribution of agreements over all queries, where 0 indicates
random and 1 perfect agreement. Bars show the histogram and the blue
curve the estimated distribution function. Below, three samples for poor
(k = —0.23), substantial (x = 0.61) and almost perfect agreement
(k = 0.99) are shown. On average, participants have a substantial
agreement of u,, = 0.61.

of k are shown at the bottom of Figure 4. This high agree-
ment suggests that our study forms a solid basis for creating
predictive models for such point placements.

4 Towards a Statistical Model for Mapping Points between
Dissimilar Shapes

We suspect that the high agreement between the point place-
ments of participants (see Section 3.4) is the result of similar-
ities they found in the containing shapes. To quantify these
similarities, we use the geometric relationships of a point to
different parts of the shape. In this section we will first inves-
tigate which of these relationships can predict user mappings,
while the second part focuses on designing statistical models
that can realize their predictive power.

4.1 Can geometric relationships predict mappings?

We first turn to the question whether there is a connection be-
tween the position of points picked by participants and simple
geometric relationships between the points and the containing
shapes. More specifically, we conjecture that these relation-
ships can be used to predict participant mappings, which is
critical if we want to create models based on them. A nec-
essary condition for this hypothesis to be true is that there
is some form of correlation between source relationships, i.e.,
the relationships of the query point with the source shape, and
target relationships, which are the relationships of the mapped
point to the target shape. In this section, we perform a corre-
lation analysis on the data set by testing for linear correlation
between source and target relationships.

We focus on 17 simple geometric relationships (R1-R17) be-
tween a point and its containing shape, inspired by the work
of Guerrero et al. [12]. Six relationships are based on a global
coordinate frame of the shape:

e R1-R2 The Bounding Box Normalized X- and Y coordi-
nates use the lower left corner of the shape’s bounding box
as origin, and are normalized to the width and height of the
bounding box.

e R3-R4 The Bounding Box Center X- and Y coordinates
use the center of the shape’s bounding box as origin.

e R5-R6 The Centroid X- and Y coordinates use the centroid
of the shape as origin.

Two relationships are defined between the point and the cen-
troid of the shape:

e R7 The Centroid Distance measures the Euclidean distance
between point and centroid.

e R8 The Centroid Direction measures the direction from
point to centroid as the angle in [—m, 7] comprised with
the positive z-axis.

Two relationships are based on local properties of the shape
boundary:

e R9 The Boundary Distance relationship measures the short-
est Euclidean distance between point and boundary of the
containing shape.

e R10 The Boundary Direction relationship quantifies the av-
erage normal direction of the shape boundary close to the
point. The average is weighted by the distance of the bound-
ary to the query point. More specifically, a Gaussian with
fixed width centered at the point. The relationship is im-
plemented as a line integral of the weighted normal over the
shape boundary, which has a closed-form solution. The av-
erage direction is quantified as an angle in [—, 7] comprised
with the positive z-axis.

Edges of the shape are segments of the shape boundary between
corners (if no corners are present, neither are edges). Four
relationships are defined between a point and an edge of the
shape:

e R11 The FEdge Distance measures the shortest Euclidean
distance between the point and the edge.

e R12 The FEdge Arc Length is the arc length from the start
of the edge to the position on the edge that is closest to the
point inside the shape. Start and end of an edge are defined
clockwise on the boundary of the shape.

e R13 The Edge Relative Arc Length is the Edge Arc Length
normalized by the total arc length of the edge, i.e., the arc
length from start to end.

e R14 The Edge Symmetric Arc Length is defined as the min-
imum of the Edge Arc Length and the ‘reverse’ arc length,
starting at the end of the edge and running towards the
start.

Three relationships are defined between a point and a corner
of the shape, where corners are defined as C; discontinuities of
the boundary (i.e., direction discontinuities):

e R15 The Corner Distance is the Fuclidean distance be-
tween point and corner.

e R16 The Corner Direction measures the direction from
point to corner as the angle in [—7, 7] comprised with the
positive x-axis.

e R17 The Corner Relative Direction measures the angle
comprised by the direction from corner to point and the
start of the first boundary segment adjacent to the corner.
This angle is normalized with the opening angle of the cor-
ner.

This is not an exhaustive list of all geometric relationships that
could be found between a point and a shape, but we will show
in the following sections that this set is sufficient to successfully
characterize participant mappings.
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Fig. 5. Correlation between query and participant point relationships.
Bars marked with a star are statistically highly significant (p < 0.001),
otherwise the corresponding p-values are shown. Of the 17 tested rela-
tionships, 15 have a non-negligible correlation.

In order to quantify the linear correlation between source
and target relationships, we use Pearson’s linear correlation
coefficient [9]. Relationships to corners and edges may result
in multiple values for a point in a shape. In this case, we only
use the value corresponding to the corner or edge that is closest
to the point.

Figure 5 shows the results of the correlation analysis. The six
relationships based on the global coordinate frame of the shape
exhibit the strongest correlation, followed by the local centroid
and boundary relationships. For relationships based on corners
and edges, only the distance shows high correlation. All cor-
relations marked with a “*” have a very high significance level
of p < 0.001. These results suggest that out of the 17 tested
relationships, 15 may be useful for predicting user mappings,
especially those based on the global coordinate frame, shape
boundary and edge and corner distance.

In comparison, edge and corner relations have lower cor-
relation scores. To examine whether these relations are still
important in some cases (e.g., close to a corner), we computed
a range-restricted Pearson’s correlation coefficient by sliding
a window of a fixed size over the value domain for each rela-
tionship. As such a window could lead to regions with very
few points, we additionally constrain our evaluation to regions
where at least 100 query points were mapped by users. For
our evaluation we chose a window size of 0.1 times the distance
between minimum and maximum relationship value, as this re-
sulted in relatively smooth results. Note that a range-restricted
correlation usually results in lower correlation coefficients com-
pared to the global evaluation, because the local inconsistency
of user responses has a higher “negative” impact.

For the purpose of illustration, we only show this evaluation
for a subset of relationships in Figure 6 (the complete set can
be found in the supplementary material). We observe that the
Centroid R8 and Boundary Direction R10 show relatively high
correlation coefficients over all ranges. This suggests that they
are almost equally important no matter in which direction a
query point is placed. In contrast, some relationships, like the
Edge Arc Length R12 or Corner Direction R16, do not corre-
late strongly in any of the specified ranges, which indicates that
they are not as useful to predict user mappings, although they
might be helpful overall (significant correlation in Figure 5).
We also observe that Bounding Box Center X/Y R3-R4, Cen-
troid X/Y R5-R6, Edge Distance R11 and Corner Distance
R15 have a noticeably higher correlation closer to the corre-
sponding shape part (i.e., edge, corner, centroid and bounding
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Fig. 6. Range restricted correlation of selected source and target shape
relationships with respect to the relationship value of query points. The
size of the range r is a tenth of the difference between the maximum
and minimum relationship value.

box center).

These results indicate that even low-correlation relationships
could improve the predictive performance of a statistical model
in some cases (i.e., when the query point is close to the cor-
responding shape part). However, this does not hold true for
the Edge Relative Arc Length R13 and Corner Relative Direc-
tion R17, which perform poorly overall and in range-restricted
scenarios. We hence excluded them from our model design.

4.2 Designing Statistical Prediction Models

In the previous section, we have seen that there is a strong
correlation between relationship values and user mappings. In
this section, we present two separate models to predict the like-
lihood of point mappings based on these relationships. More
specifically, we describe the similarity between the geometric
relationships of points in the source (source points) and tar-
get shape (target points) as features. Our models will use this
similarity to predict a likelihood for any source-target point
mapping to be done by a user (Section 4.2.1). To allow our
models to predict such likelihoods, we first need to train them
on ground-truth likelihoods, which we approximate by fitting a
Gaussian Mixture Model to the user-study data (Section 4.2.2).
Based on this, we propose a linear model (Section 4.2.3) and a
random-forest model (Section 4.2.4), which allow us to predict
the likelihood of point mappings between dissimilar shapes.

4.2.1 Relationship Similarity Features

Because the training of our statistical models cannot be done
directly on the relationships of query and target points, we
define the similarity between a query and target point' as a
Gaussian of the difference between relationship values:

s(g,t) = G(g — t,0,0%), 3)

where ¢ is the query relationship value and ¢ the target relation-
ship value. We choose sigma to reflect a maximum accuracy
of point placements made by users. In all our experiments,
we assume this maximum accuracy to be 0.016 of the normal-
ized bounding-box diagonal of the target shape. This accuracy
in the spatial domain is then transformed to an accuracy of
relationship values for each individual relationship. Note that
using this formulation of similarity is a design choice, and other
formulations may lead to better predictions. However, we show
in Section 5.2 that this formulation achieves significantly im-
proved predictions over well-known methods for shape match-
ing.

The shapes in our data set have different numbers of corners
and edges. Consequently, for a relationship type such as the
corner distance, we do not have a single value g or ¢, but rather
a set of values @ or T, one for each corner. To employ standard
machine-learning techniques, we have to use the same number
of relationships to describe each point placed by a user. We

1Note that the term target point not only refers to points placed by
users, but to any point inside the target shape.



pick the value corresponding to the closest feature (e.g., the
corner closest to the query point) from each set to get an equal
number of features, leaving us with one similarity value for
each relationship type, which can be arranged into a 15-element
feature vector f for any query-target point pair:

£=(sa™ M), S@ ) @)

where ¢°? and t°? refer to the boundary distance relationship
values in the source and target shape respectively, and Q°¢ and
T4 are the set of query and target edge distance relationship
values from which S picks the closest features of both sets and
computes their similarity s.

4.2.2 Ground-Truth Likelihood of Point Placements

Besides the feature vector f for a query-target point pair, we
need to define a likelihood [ to describe the mapping from
source to target shape statistically and to allow us to train our
statistical models. In other words, we need to find a function
that returns the likelihoods of user mappings

L(f) = 1. (5)

Assuming that when users map query points to a tar-
get shape the resulting target points will form one or more
clusters that follow a normal distribution, the underlying
distribution of user points can be represented by a mix-
ture of Gaussians. In order to find the best-fitting mix-
ture, we iteratively increase the number of Gaussians fit-
ted to the data, beginning with one Gaussian. Addition-
ally we require that a single point cannot form a cluster.

We then select the Gaussian

mixture distribution (GMD)

& with the lowest Bayesian

information criterion (BIC)

and where all Gaussian

distributions lie inside the

shape to represent the user point distribution (see examples

above). We can then obtain the likelihood I of a query-target

point mapping with a feature vector f, by evaluating the GMD
at the target point position

L(f) = GMD(t™) =, (6)

where t*¥ can be any of the relationships of f based on a Carte-
sian coordinate frame, as long as the GMD was fitted in the
same coordinates (e.g., Bounding Box Normalized X- and Y').

4.2.3 Linear Model

The first statistical model we introduce is based on a linear
combination of the 15 relationship types. More specifically, the
model Mpm is parametrized by a vector of linear coefficients
w:

Mim(fi,w) = fw =1, (7)

where f; is a feature vector and [; is the predicted likelihood for
a query-target point combination ¢, as defined in Section 4.2.2
(I; = L(£;)). We fit this linear model to our user-study data by
solving the linear least squares problem:

Fo=1 (0 >0), (®)
where F is a matrix of size N x 15 (which we call the user feature
matriz), with rows composed of N feature vectors f; as defined
in Section 4.2.2. We constrain the coefficients w to be larger
than zero, since all non-negligible correlation coefficients found
in Section 4.1 are positive. To obtain the feature vectors f; and
predicted likelihoods I; for the entire target shape for a given
query point (and not only in the typically high-likelihood areas
covered by the user-placed points), we cover the target shape
with a regular grid of points to obtain the feature vectors for

those points that lie inside the target shape. The corresponding
placement likelihoods are obtained from the GMD defined in
Section 4.2.2. A grid spacing of 0.01 times the maximum of
the width and height of the shape is used; tests have shown
that using a denser grid has no relevant impact on the results
for our set of shapes. The feature vectors and likelihoods of
the grids for all query points in the user study are assembled
into the N rows of the user feature matrix F and the vector of
likelihoods 1, giving us over N = 7.4 million data points.

4.2.4 Random-Forest Model

As a second model we use random forests [15], similar to [4],
which are generated by training individual regression trees on
multiple subsets of the data and merging them into a single
tree. Multiple trees are used to reduce overfitting. We use the
same user feature matrix F and likelihood vector 1 described
in the previous section as training data.

Similar to the linear model, the random-forest model Mgrr
takes a feature vector as an input and predicts the correspond-
ing likelihood.

Mrr(f;) = i, 9)

Unlike the linear model, dependencies between individual fea-
tures can be modeled through the tree-like structure, as predic-
tions of subtrees of a node can be based on completely different
rules. This makes the random-forest model more powerful, but
also computationally more expensive.

To optimize the performance, we selected the training pa-
rameters in a way that combines a low out-of-bag error (predic-
tive performance) with a short training time. For our dataset
this resulted in using 15 subsets for training the individual re-
gression trees with a minimal leave size of 100 observations.

5 Evaluation
5.1 Analysis of Predictive Power

To answer the question whether the linear and random forest
models can be used to predict user mappings, we propose two
quantitative performance measures that compare the results of
query point mappings produced by models to those of users.
In the following we will discuss how to define them in case of
a single query point mapping:

1. The first measure is intended to evaluate how well a model
can estimate the distribution of user points inside the target
shape for a given query point. Because none of the models
included in the evaluation can produce continuous distribu-
tions, we densely sample the target shape and compute the
mean squared error (MSE) of the predicted likelihoods to
the likelihoods and the reference distribution (the Gaussian
mixture distribution of user responses from Section 4.2.2).

2. With the second measure we want to evaluate how “close”
the predicted most likely user point is to the actual most
likely user point in the reference distribution. Note that
measuring the Euclidean distance between these points is
not suitable for our purpose, as the quality of the prediction
also depends on the density of users placements. The denser
the user placements are, the closer we want our predictions
to be to the actual most likely user points. In other words,
we would like to measure a distribution. Fortunately, the
likelihoods we obtain from our reference distributions in
Section 4.2.2 already fulfill this condition. Hence, we use
the ratio between likelihoods of the predicted most likely
user mapping and the actual most likely user mapping as a
performance measure and refer to it as the likelihood ratio
(LHR). It lies between 0, indicating bad predictions, and
1, perfect prediction of the most likely user mapping.

To obtain these measures for a set of query point mappings,
we compute the mean of the values.



Models a) LHR | b) MSE
) Random Mapping 0.02 —
baseline 1 41, hal Mapping 0.20 -
it Inner Shape Cont. 0.02 3.93x10~7
CXISHNE | B_Spline Shape Cont. 0.17 —
B Linear Model 0.22 1.29x10™7
propose Random Forest 0.38 0.41x10~"
reference [ Participants [ [ 0.38 [ 0 l

Table 1. A comparison of a) average likelihood ratios (LHR) and b)
average mean squared error of likelihoods (MSE) after cross validation
for all approaches discussed in this work (LHR: between 0 and 1, higher
is better; MSE: lower is better).

Furthermore, cross validation is used to estimate how well
our models generalize. To this end, we divide the data into 30
groups based on shape pairs. For each of these groups, we train
the models on the remaining data (the 29 other groups) and
perform predictions on the selected group. The final result is
the average over all groups (see proposed models in Table 1).
We compare them to two baseline methods and the reference
result based on user responses (see baseline and reference in
Table 1 respectively). The first baseline method, “random
mapping”, places points randomly inside the target shape. In
“global mapping”, the query point is placed at the same nor-
malized bounding box position in the target shape (as if using
only the Bounding Box Normalized relationship). Should this
point lie outside the target shape, the next closest point inside
the shape is used. As reference for the performance of these
approaches, we compare to our Gaussian Mixture distribution
estimated from the actual user data (Table 1, last row). For
the LHR score, we compute the average LHR of all user points.
Note that the reference achieves a score below the maximum
of 1 because there is disagreement between users — only perfect
agreement would give the maximum score.

Compared to the baseline methods, the linear model does
not significantly improve the prediction of the most likely user
mapping when compared to global mapping (0.22 vs. 0.2) and
reaches only about 58% of the average user LHR of 0.38. In
comparison, random forests produce better results (LHR of
0.38), which are comparable to an average participant’s per-
formance. Especially the MSE of distributions is significantly
smaller than for the linear model (approximately three times).
This shows that the random forest model is very well suited
to predict user mappings, which matches our expectation that
models that can handle interactions between geometric rela-
tionships should perform better (Section 4.1).

We conclude that the random forest model significantly im-
proves upon the baseline methods in predicting user mappings
and that it is capable of producing results comparable to users.

5.2 Comparison to Existing Approaches

In addition to the baseline methods presented in Section 5.1, we
compare our results to two further approaches based on shape
contexts [1], which is an established shape-matching approach.
To our knowledge there is no method in current literature that
explicitly attempts to find similar points in dissimilar shapes.
Again, cross validation is applied using 30 groups as discussed
in Section 5.1 to compute the average likelihood ratios and
mean-squared error of likelihoods.

To construct a mapping from the source to the target shape
using shape contexts, we employ two strategies. The first strat-
egy results in a likelihood function over the target shape, while
the second strategy finds a single most similar point.

Inner Shape Contexts Shape contexts describe the geom-
etry in the neighborhood of a point. Two points have similar
shape contexts if the geometry in their neighborhood is re-
lated by an approximately rigid transformation. Our first ex-

=

Normalized Likelihood Maps

BAAR EXR I i X

Fig. 9. Three points are mapped to increasingly different shapes using
the random-forest model. Local geometric relations in the target shape
become more important as locations with similar global relations become
unavailable. The likelihood maps for each of the points are shown in
the bottom row, higher likelihoods correspond to brighter values.

isting comparison method for mapping points between dissim-
ilar shapes is a straightforward application of shape contexts
to a regular grid inside the target shape. For each grid point,
we compute a likelihood value as the similarity of the shape
context centered at the grid point to a shape context centered
at the query point, thus creating a densely sampled likelihood
function over the target shape. This likelihood function can be
compared to the prediction of our models.

Inner shape contexts have a significantly lower performance
than all other non-naive mappings (Table 1). The performance
of predicting the most likely user mapping (0.02) is as low as
the Random Mapping baseline method and performs worse in
predicting the likelihood of user mappings (3.93 * 1077). This
shows that the shapes used in our study are indeed dissimilar
and that a straightforward shape-matching approach does not
provide satisfactory results, as can be seen in Figure 8, were
Inner Shape Contexts can lead to unintuitive mappings.

B-Spline Shape Contexts The second strategy employs
shape contexts only to establish point-wise bijective correspon-
dences between the boundaries of two shapes. Then, a B-spline
grid is fitted to the target shape and optimized to minimize
distortion while respecting the correspondences. The B-spline
grid defines a bijective mapping between the source- and target
shape. We use the image of the query point as prediction for
the target point.

This method has the great disadvantage that points can be
located outside the target shape, since the B-spline grid cannot
be constrained to remain inside highly concave shapes without
introducing too much distortion, which would lower the quality
of the resulting mapping. In such cases we shift the point to
the closest location inside the target shape. Additionally, this
method cannot be used to predict a likelihood function in the
target shape. Therefore, only the LHR performance measure
is used for comparisons. Compared to the Random Mapping
baseline method, it performs noticeably better in predicting the
most likely user mapping (0.17), but still relatively bad in com-
parison to the Global Mapping baseline method and the pro-
posed models from Section 4.2. And because points that would
be placed outside the target shape have to be post-processed in
some way (e.g., in our case shifting them to the closest bound-
ary position), the mapping results can be quite unpredictable.

5.3 Qualitative Evaluation

We provide several qualitative results for our random forest
model as best-performing predictor in Figure 7, and compare
it to the ground-truth solution, linear model and inner shape
context model. In each example, points were transferred from a
source shape to a target shape by placing them at the maximum
of the predicted placement likelihood in each target shape. Fig-
ure 8 provides some additional results of query points that
where not part of the user study. The source and target shapes
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Fig. 7. A comparison of a subset of query point mappings using different approaches and comparing them to the ground-truth mapping obtained
from user data. The random forest model consistently outperforms the other methods.
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Fig. 8. A comparison of point mappings using different approaches. The top two rows show results for shapes that were also part of the user
study, while the lower two rows consist of novel shapes. Only the random forest model consistently maps points to plausible locations, while other
models often lead to unintuitive placements.



Fig. 10. Mapping trees between garden layouts, keeping a minimum dis-
tance between trees (indicated as dashed circles). Objects are mapped
to their likelihood maxima only if there is sufficient distance to previ-
ously placed points (top), otherwise they are placed at the next best
position (bottom). The inset shows the actual maxima locations.

are either taken from the set of shapes used in the user study
(the two top rows), or novel shapes are used (the two lower
rows). Note how the positions found by the random forest
model are typically more intuitive than positions found by the
other two models.

This is consistent with the quantitative results described in
Section 5.1. We ascribe this superior performance to the ability
of the random forest model to capture dependencies between
feature values (see Section 4.2.4). For example, we can ob-
serve that the importance of global relationships increase as
the distance of the query point from shape parts used in local
relationships, like corners, increases (for example, compare the
results for the first and last column).

In Figure 9, we transfer points to three shapes that vary from
similar on the left to dissimilar on the right. We can observe
that points are placed at locations with similar local and global
relationships on the left, and rely more on local relationships
towards the right (for example, the distance of the red and
blue points from a corner or the boundary), as locations with
similar global relationship become unavailable.

6 Applications

In the content-creation industry, reusing assets like meshes and
textures is common practice. However, given an object layout,
texture or material created for a model, retargeting them suc-
cessfully to other models with different shapes is usually done
manually and requires a significant amount of work. In this sec-
tion, we show how our findings can be applied to simplify this
process. In particular, we use our trained random-forest model
to transfer scene layouts in rooms or parks to rooms or parks
of different shapes (Section 6.1), and to transfer control maps
between different shapes (Section 6.2). These control maps are
parameters defined over the shape that can be used to guide
procedural generation of textures, materials or geometry.

6.1 Object Transfer

Our models can be used to automate the transfer of objects be-
tween different shapes. We perform several experiments where
we retarget scene layouts to new bounding shapes. Objects are
transferred between the shapes consecutively, one at a time.
For each object in the source shape, our random-forest model
computes a placement likelihood map in the target shape. High
likelihoods correspond to locations that are predicted to be in-
tuitively similar to the position of the original object.

i Forest m Flowers B 8 i i
Water

Grass

Fig. 11. Mapping a park layout defined from an “X"-shaped park to
three other parks of different shapes. Labeled regions in the park are
shown in different colors. Each region is defined and transferred using
a binary control map that is 1 at the region and 0 everywhere else.

Transferred objects should not intersect, and in many cases,
objects need to be placed at a minimum distance from each
other. For example, trees that are transferred between two
garden layouts cannot occupy the same space, so we need to
rearrange them in a way that is plausible to the user. Fig-
ure 10 shows an example where we constrain target positions
to have a minimum distance to previously transferred objects.
We greedily position objects with higher likelihoods first, and
place the remaining objects at locations that do not violate the
minimum distance constraint. This greedy approach is simple,
but gives good results as long as the layout is not populated
too densely. For dense layouts, using non-linear optimization to
maximize the placement likelihood of objects while respecting
the minimum distance constraints would yield a better, albeit
computationally more expensive solution.

6.2 Control Map Transfer

Another application is automating the transfer of control maps
for procedural content. We define control maps as 2D functions
on a surface with values between zero and one. Each map con-
trols a parameter of procedural content on the surface. In large
collections of objects like houses, parks or rooms, procedural
details like ponds, plant growth, decay or dust might need to be
added. In these large-scale settings, transferring control maps
manually (e.g., by painting) can be very time consuming or
even impossible to do in a reasonable time frame.

To transfer a control map automatically, we have two op-
tions to use the placement likelihoods predicted by a model: In
the forward-mapping approach, we predict the likelihood maps
from each point in the source shape to the target shape. We
can then splat the control map value of each point in the source
shape to high-likelihood regions in the target shape. This ap-
proach has the main disadvantage that some regions that are
not covered by the splats may be left with undefined values.
Instead, we opt for a backward-mapping approach. We com-
pute the likelihood maps from each point in the target shape
to the source shape. The control map value at each point in
the target shape is then gathered from high-likelihood regions
of the source shape.

More specifically, we first sample source- and target shapes
densely in regular grids. For each point in the target shape,
we compute the likelihood to all points in the source shape
using one of the models described in Section 4.2. The control
map value at a point in the target shape is then the average
of all control map values in the source shape, weighed by their
likelihood values.

Our method is agnostic to the procedural generation algo-
rithm used, so we transfer each control map separately and
assume there are no dependencies between control parameters.

Figure 11 shows how we can apply this method to predict
the mapping of labeled regions, like forests, ponds and flower
beds, between parks of different shapes, using the random-
forest model. The regions are defined through binary control-
map layers (which may be obtained through automatic or man-
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Fig. 12. Comparing statistical models for control-map transfer. Since
the random-forest model more accurately predicts user mappings than
the other two models, the colored regions are mapped to intuitively more
similar parts of the target shapes.
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ual segmentation), one layer for each label. Transferring these
control maps using the method described above gives us a class
membership likelihood for each label at each target point. We
choose the label with highest likelihood. While this leads to
plausible results, optimization strategies may also be used to
allow the addition of complex constraints.

The results in Figure 11 were generated with the random-
forest model; Figure 12 shows a comparison to other models.
The superior predictive power of the random-forest model re-
sults in more intuitive mappings.

Our technique produces discontinuous mappings, which are
preferable for our use cases, because we want to support one-to-
many and many-to-one mappings. For example, we would like
the corners of a five-sided star to be mapped to the corners of
a four-sided star. Examples of one-to-many and many-to-one
mappings can be observed in Figure 12.

7 Limitations and Future Work

In our study, we focused on simple shapes without high-
frequency detail or semantics. Further investigation is needed
to generalize our findings to more complex shapes. Also, we
focus our evaluations on 17 simple geometric relationships of
which we used 15 in our models. Adding additional geomet-
ric information could possibly improve the performance of our
models and algorithms. We would also like to experiment with
neural networks (e.g. CNNs) as an alternative approach to
model the mapping between shapes based on our study data.

Our method can be applied to 2D manifolds that can be
mapped to a plane. In that case, the boundary of the manifold
would provide all the features. In future work, we could use
additional features of a manifold, such as differential properties
of the surface.

With our model, it should be relatively straightforward to
combine the placement likelihoods predicted from different
source shapes or query points in a single target shape (e.g.,
taking the average, multiplying). This would allow combining
the layout of multiple source shapes in a single target shape, a
direction that might be interesting to explore in future work.
We would also like to explore mappings based on our model

that are constrained by additional desirable properties, such
as smoothness constraints; one possible approach is to use our
control maps and the smoothness constraints as energy terms in
a Markov Random Field optimization. When placing multiple
points, it may be beneficial in some cases to introduce con-
straints between these points, like maintaining their relative
distances. As future work, it would be interesting to explore
optimization algorithms to maximize pointwise similarity while
respecting given constraints between points.

Lastly, even though our models can describe and predict user
mappings, we do not claim to know the actual reasoning made
by users to pick particular target points.

8 Conclusions

In this paper, we have presented results of a study that in-
vestigates how people map points between dissimilar shapes.
Participants were asked to map a point in a source shape to
a target shape. Our findings suggest that even though the
shapes are dissimilar, users agree in their point placements.
Furthermore, we investigated simple geometric relationships
between the points placed by users and the containing shape
and found a strong correlation between these relationships in
the target shape and corresponding relationships in the source
shape. We proposed two models based on these relationships,
which been used to successfully predict user mappings with
a higher accuracy than well-known shape-matching methods
and even achieved results similar to actual participants when
including dependencies between geometric relationships in the
model. We demonstrated how these models can be used to
develop new algorithms that allow users to map procedural
content between shapes with low similarity.
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