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Figure 1: Our proposed LayoutEnhancer combines data-driven learning from potentially imperfect data with expert knowl-
edge. Generated layouts are biased to follow rules laid out in the expert knowledge, effectively reducing the impact of data
imperfections. See Figure 2 for examples of imperfections that are avoided due to the inclusion of expert knowledge.

ABSTRACT
We address the problem of indoor layout synthesis, which is a topic
of continuing research interest in computer graphics. The newest
works made significant progress using data-driven generative meth-
ods; however, these approaches rely on suitable datasets. In practice,
desirable layout properties may not exist in a dataset, for instance,
specific expert knowledge can be missing in the data. We propose
a method that combines expert knowledge, for example, knowl-
edge about ergonomics, with a data-driven generator based on the
popular Transformer architecture. The knowledge is given as dif-
ferentiable scalar functions, which can be used both as weights or
as additional terms in the loss function. Using this knowledge, the
synthesized layouts can be biased to exhibit desirable properties,
even if these properties are not present in the dataset. Our approach
can also alleviate problems of lack of data and imperfections in the
data. Our work aims to improve generative machine learning for
modeling and provide novel tools for designers and amateurs for
the problem of interior layout creation.
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1 INTRODUCTION
Indoor spaces play a central role in our everyday lives. The syn-
thesis and design of indoor layouts (apartment layout, workplace
layout) is a long-standing problem in several disciplines, including
graphics [Fisher et al. 2012; Merrell et al. 2011].

In this paper, we address the problem of data-driven layout syn-
thesis that has recently gained renewed interest in computer graph-
ics due to the advent of a novel neural methods in generative ma-
chine learning [Para et al. 2021; Paschalidou et al. 2021]. However,
despite recent progress, interior layout synthesis is still challenging
for machine learning algorithms. The problem is twofold:

First, reliable training data is difficult to obtain. Designs need
to be crafted manually by professionals, making the process labor-
and time-intensive and hence expensive.
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Figure 2: LayoutEnhancer can learn to improve issues found
in imperfect data like ergonomic issues (left room): (i) a win-
dowdirectly behind the TV causes glare on sunny days,mak-
ing it difficult towatch due to a big contrast in brightness. (ii)
Insufficient illumination for reading a book without a light
source behind or beside the bed; and geometric issues (right
room): (i) desk is intersecting with the bed and the closet; (ii)
closet is covering the door.

Second, readily available datasets may have been created by
non-experts and may contain several issues like incorrect intersec-
tions, unrealistic placement, misplaced objects, etc. (cf. Figure 2). At
the same time, high-quality indoor design requires expert knowl-
edge because good furniture arrangements are connected to sev-
eral considerations like functionality, usability, aesthetics, cost-
effectiveness, and ergonomics. These may not all be reflected in a
dataset, which contains layouts that were most likely not created
by interior design experts.

We address these problems by using a Transformer-based gen-
erative model with additional expert knowledge “injected” into
the data-driven training process. Transformers are generative mod-
els originally proposed for natural language processing that have
proven very successful in a wide range of domains [Vaswani et al.
2017]. Recently, several methods have successfully used transform-
ers for layout generation [Para et al. 2021; Paschalidou et al. 2021;
Wang et al. 2020].

In our approach, a layout 𝑆 is defined as a sequence of discrete
elements 𝑆 B {𝐹0, . . . , 𝐹𝑁 }, each represented with a fixed-length
parameter vector. A traditional generative model learns to generate
new layouts according to a probability distribution 𝑝 (𝑆) that approx-
imates the probability distribution of the dataset 𝑝 (𝑆) ≈ 𝑝data (𝑆).

We propose to inject additional information based on expert
knowledge into the learning process to obtain a learned distribution
𝑝 ′(𝑆) that reflects both the dataset distribution and the additional
information. The expert knowledge biases the learned probability
distributions to emphasize or de-emphasize specific properties of
the layouts. In Section 3 we derive a set ergonomic rules from expert
literature [Kroemer 2017].

We integrate this information into the loss function of our trans-
former-based generative model in two ways: (i) as weights of train-
ing samples and (ii) as additional loss that assesses the quality of
samples proposed during the training process. In the second case,
expert knowledge needs to be differentiable w.r.t. the predicted
probabilities. We discuss the details in Section 4.

In Section 5, we evaluate the proposed method and compare it
to a recent data-driven method that does not utilize expert knowl-
edge [Paschalidou et al. 2021]. We demonstrate that with our ap-
proach we can improve the ergonomic quality of generated layouts,
effectively increasing the perceived realism compared to others.

In summary, the contributions of this paper are three-fold:
• We introduce a differentiable ergonomic loss that can be
used to assess the ergonomic quality of interior layouts. We
derive this loss from the expert knowledge in ergonomics
(Section 3).

• We integrate this differentiable loss into the training of a
Transformer network (Section 4).

• We empirically show that we can train a generative model
with this loss that creates samples with increased ergonomic
quality and realism compared to the state of the art (Sec-
tion 5).

2 RELATEDWORK
Interior spaces and their layouts are part of everyday life. For exam-
ple, organizations such as Ikea and Wayfair are actively working
toward understanding their customers needs [Ataer-Cansizoglu
et al. 2019]. Typically, each domain has different requirements and
needs, which require manual design [Wayfair 2022].

In practice, designing layouts is a laborious task due to high di-
mensional design space, ranging from selecting relevant furniture
pieces, to arranging the target space to fit the design goals. To alle-
viate such manual workflow, researchers have proposed multiple
computational methods to assist in layout design. Below we classify
previous work based on their approach.

Deep Learning Methods. Such methods employ neural networks,
in which the network learns layout patterns from images, graphs, or
other data. Such 3d scene data and the data modality is an important
factor in deep learning [Fu et al. 2021a]. Early deep learning work
utilizes top-down images of layouts to understand object-object
layout relationships [Wang et al. 2018]. However, images do not
naturally contain sufficient detail for the network to synthesize
complex human-centered layouts. Graphs have also been proposed
as a means to encode spatial layout information [Luo et al. 2020;
Wang et al. 2019; Zhou et al. 2019].

In addition to images and graphs, researchers explored how to
use other 3d scene data representations for synthesis. Zhang et
al. [2019] synthesize scenes by sampling from a vector that rep-
resents the spatial structure of a scene. Such structure encodes a
hierarchy of geometrical and co-occurrence relations of layout ob-
jects. [Zhang et al. 2020] proposed a hybrid approach that combines
such vector representation with an image-based approach. Also
other utilize graph structures to describe scene layouts [Di et al.
2020]. Yang et al. [2021] combine such vector representation with
Bayesian optimization to improve furniture placement predictions
of the generative network. Recently, variational autoencoders have
been proposed for indoor layout synthesis [Chattopadhyay et al.
2022].

Most recently, researchers have proposed to use neural networks
based on transformers [Paschalidou et al. 2021; Wang et al. 2020].
However, in contrast to our method, their work does not account
for ergonomic qualities which results in misplaced furniture items.

Other Approaches. Before the era of deep learning, early work
considered layout synthesis as a mathematical optimization prob-
lem, where a set of constraints describe the layout quality in terms
of energy an energy functional [Merrell et al. 2011; Weiss et al.
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Figure 3: Ergonomic rules implemented in our system. We
chose these guidelines as they are essential in most indoor
scenarios, like reading a book, watching TV, or working at
the desk or the computer. We convert the rules to scalar cost
functions and evaluate them using activities (cf. Section 3).

2018; Yu et al. 2011]. The layout is then optimized via stochastic or
deterministic optimization process.

Other researchers proposed data-driven methods. Qi et al. [2018]
use interaction affordance maps for each layout object for stochastic
layout synthesis. Similarly, Fisher et al. [2015] used annotated 3d
scans of rooms to identify which activities does an environment
support. Other researchers also learn layout structure from 3d scans
for scene synthesis [Kermani et al. 2016]. They extract manually
defined geometric relationships between objects from such scans,
which are then placed using a stochastic optimization.

Other research has made progress towards incorporating human-
centered considerations for 3d scene synthesis. Fu et al. [2017] use a
graph of objects to guide a layout synthesis process. However, they
only consider static human poses in relation to activities. Zhang
et al. [2021] and Liang et al. [2019] focus on optimal work-space
design. While the authors demonstrate novel use of simulation and
dynamic capture of agent in action metrics, they only focus on
mobility and accessibility based factors. In [Puig et al. 2018], the
authors demonstrate how to evaluate the functionality of layouts.
However, this work does not include 3d scene synthesis.

Early work [Merrell et al. 2011; Yu et al. 2011] has also included
ergonomic and interior design knowledge into the layout design
process. Our approach differs from these existing methods in two
major aspects. First of all, their methods require the manual defi-
nition of a number of additional layout design rules. Second, their
methods are designed to optimize the arrangement of an existing
furniture layout, while our approach can synthesize entirely new
layouts with desired characteristics.

3 ERGONOMIC COSTS
To derive a set of rules used to quantify an ergonomic quality of a
design, we studied the literature of ergonomic guidelines [Kroemer
2017]. As a result, we order the information in a hierarchical manner,
using the building blocks of activities, actions and ergonomic costs.

An activity is a set or sequence of actions that need to be per-
formed to accomplish a specific goal [Puig et al. 2018]. An activity
could be, for instance, reading a book or watching TV. A single
action puts specific elements of a layout into a common context,
for example looking at the TV while sitting on the sofa. Ergonomic
costs are evaluated for each action to quantify how suitable the
arrangement of the layout elements is in an ergonomic sense.

The ergonomic losss obtained for each evaluated ergonomic rule
are then aggregated up the hierarchy to obtain the losss for each
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Figure 4: Human activity in the room based on the example
of Watch TV. For all possible sitting locations 𝑝 𝑗 an avatar
is sampled and the ergonomic rules for visibility and glare
are evaluated. The final contribution is the weighted sum of
costs over every combination of a sitting possibility 𝑝 𝑗 and
all TVs 𝑞𝑘 . Please refer to Section 3 for more details.

action, activity and finally for the whole layout. This formulation
makes it easy to define new evaluation functions for different ac-
tivities by combining the various building blocks. In our approach,
we consider the following ergonomic costs (cf. Figure 3):

• Reach measures how easy it is to interact with a target object
from a given position.

• Visibility measures how visible a target object is for a given
position and viewing direction.

• Lighting measures how well an object is illuminated by light
sources in the room.

• Glare measures the decrease in visual performance from
strong brightness contrast caused by having bright light
sources in the field of view.

• Accessibility measures how much free space is in front of a
target object to allow easy interaction and walking by.

We choose the above five rules as examples for two reasons. First,
they are all relevant for the kinds of activities that are often per-
formed in the prevalent room types that are included in publicly
available indoor layout datasets . The second reason is a practical
one, since these rules can be defined as (piecewise) differentiable
scalar functions in a range of [0, 1], which perfectly suits our needs.

For instance, given a target object at position 𝑞𝑘 viewed from
position 𝑝 𝑗 and viewing direction 𝑢 𝑗 , we define the visibility cost
as smooth scalar function 𝐸𝑉 of two vectors 𝑢 𝑗 and 𝑣 =

𝑞𝑘−𝑝 𝑗

∥𝑞𝑘−𝑝 𝑗 ∥
which can be minimized:

𝐸𝑉 = 1 −
( 1 + ⟨𝑢 𝑗 , 𝑣⟩

2

)
.

Together with the glare cost function 𝐸𝐺
(
𝑝 𝑗 , 𝐵, 𝑞𝑘

)
with light

sources 𝐵, we can compute the loss for the activityWatch TV (cf.
Figure 4):

𝑒𝑡𝑣
𝑗,𝑘

=
𝐸𝑉

(
𝑝 𝑗 , 𝑢 𝑗 , 𝑞𝑘

)
+ 𝐸𝐺

(
𝑝 𝑗 , 𝐵, 𝑞𝑘

)
2

.

Since there can be multiple TVs in a room in addition to multi-
ple pieces of seating furniture, we need to compute the weighted
sum of costs over every combination of 𝑝 𝑗 and 𝑞𝑘 , using 𝑒𝑡𝑣 =
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Figure 5: A layout is represented as a sequence 𝑆 = (𝑠1, . . . , 𝑠𝑛).
Each individual token 𝑠𝑖 in the sequence represents an at-
tribute of a furniture object, such as its category, orientation,
position or dimensions.

[𝑒𝑡𝑣
𝑗,𝑘
] 𝑗 ∈𝑃,𝑘∈𝑄 :

𝐸𝑡𝑣 = ⟨𝑒𝑡𝑣, softmin(𝛽 · 𝑒𝑡𝑣)⟩ .

The costs of every possible activity are then aggregated to obtain
the total ergonomic loss 𝐸 of the layout. Figure 3 depicts all five er-
gonomic cost functions implemented in our framework in a similar
differentiable fashion. We refer the reader to supplemental mate-
rial for details on the implementation of the other ergonomic cost
functions and activities.

4 LAYOUT GENERATIONWITH EXPERT
KNOWLEDGE

We build on top of Transformers [Vaswani et al. 2017] as generative
model for layouts [Para et al. 2021; Paschalidou et al. 2021; Wang
et al. 2020]. In this section, we first present our model and then
describe how we integrate our ergonomic loss into the training.

4.1 Generative Model
Transformers are sequence generators that originate from natural
language processing. A layout is generated step-wise as a sequence
of discrete tokens 𝑆 = (𝑠1, . . . , 𝑠𝑛), one token 𝑠𝑖 at a time. Thus, we
first need to define a sequence representation of our layouts.

Sequence representation. Each furniture object is represented as
a 6-tuple 𝐹

𝑖
= (𝑐

𝑖
, 𝑜

𝑖
, 𝑥

𝑖
, 𝑦

𝑖
,𝑤

𝑖
, 𝑑

𝑖
), with 𝑐

𝑖
indicating the object cat-

egory, such as chair or table, 𝑜
𝑖
the orientation, 𝑥

𝑖
and 𝑦

𝑖
being

the x- and y-coordinates of the bottom left corner of the furniture
object,𝑤

𝑖
being the width, and 𝑑

𝑖
the depth of the furniture object

(cf. Figure 5) . Since previous work [Paschalidou et al. 2021] has
shown that randomizing the order of objects that do not admit a
consistent ordering can be beneficial, we follow a similar approach.
The bounding box of the room itself is represented as the furniture
object 𝐹0 and is thus always the first of the ordered furniture objects,
followed by the doors and windows of the layout. The order of all
other furniture objects is not consistent and instead randomized
during training. We concatenate the 6-tuples of the ordered furni-
ture objects and add a special stop token to the end of the sequence
to obtain the sequence 𝑆 . An example can be seen in Figure 5.
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Figure 6: To propagate the ergonomic loss back to the token
probabilities, we choose themaximumof the discrete values
of the predicted token and convolve the neighborhood with
a Gaussian kernel, centered at the discrete maximum. The
resulting token value is a weighted sum of the discrete val-
ues in this neighborhood, weighted by the probability and
distance to the kernel center of each discrete value. Please
refer to Section 4.2 for more details.

Similar to previous work [Wang et al. 2020], we use two addi-
tional parallel sequences to provide context for each token in 𝑆 : a po-
sition sequence 𝑆𝑃 = (1, 2, . . . , 𝑛) that provides the global position
in the sequence, and an index sequence 𝑆𝐼 = (1, 2, . . . , 6, 1, 2 . . . , 6)
that describes the index of a token inside the 6-tuple of a furniture
object.

Our approach also supports an alternate method of providing the
room shape as a binarymap of the floor plan, similar to ATISS [2021].
While specifying the room as part of the sequence allows the net-
work to learn how to synthesize arbitrary rectangular rooms, using
a binary map instead lets the network learn how to generate furni-
ture layouts for more complex non-rectangular room shapes.

Quantization. Transformers typically operate with discrete to-
ken values. By learning to predict a probability for each possible
value of a token, a transformer can model arbitrary distributions
over token values. To obtain discrete values, we quantize all object
parameters except orientations 𝑜𝑖 and categories 𝑐𝑖 uniformly be-
tween the minimum and maximum values that occur in the dataset.
Orientations 𝑜𝑖 are uniformly quantized in [0, 2𝜋), adjusting the
resolution to preserve axis-aligned orientations as integer values.
We use a resolution of 𝑟 = 256. Categories 𝑐𝑖 do not require quanti-
zation as they are already integers. We use categorical distributions
for all tokens.

Sequence generation. Our Transformer-based sequence genera-
tor 𝑓𝜃 factors the probability distribution over sequences 𝑆 into a
product of conditional probabilities over individual tokens:

𝑝 (𝑆 |𝜃 ) =
∏
𝑖

𝑝 (𝑠𝑖 |𝑠<𝑖 , 𝜃 ),

where 𝑠<𝑖 B 𝑠1, . . . , 𝑠𝑖−1 is the partial sequence up to (excluding)
𝑖 . Given a partial sequence 𝑠<𝑖 , our model predicts the probability
distribution over all possible discrete values for the next token:
𝑝 (𝑠𝑖 |𝑠<𝑖 , 𝜃 ) = 𝑓𝜃 (𝑠<𝑖 , 𝑠𝑃<𝑖 , 𝑠

𝐼
<𝑖
) that can be sampled to obtain the next

token 𝑠𝑖 . Here 𝑠𝑃<𝑖 and 𝑠
𝐼
<𝑖

are the corresponding partial position and
index sequences that are fully defined by the index 𝑖 . We implement
𝑓𝜃 as a GPT-2 model [Radford et al. 2019] using the implementation
included in the Huggingface library [Wolf et al. 2020].
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4.2 Ergonomic Loss
A loss designed by an expert, such as an ergonomic rule, defines
desirable properties of layouts that may not be fully realized in a
dataset. However, while minimizing the expert loss may be neces-
sary to obtain a desirable layout, it is usually not sufficient, since a
manually defined loss can usually not describe all desirable proper-
ties of a layout exhaustively. Our goal is thus to combine the expert
loss with a data-driven generative model for layouts. However,
integrating the ergonomic loss in a transformer-based generative
model poses two main challenges:

C1: Transformers generate layouts in multiple steps, each step
generating a small part of the layout such as a single object or
a single object attribute. Each step, where only a partial layout
has been generated, requires supervision, but the ergonomic loss
cannot reliably be computed on a partial layout.

C2: The ergonomic loss is defined over continuous parameters,
such as object positions or orientations. However, transformers
typically output a probability distribution over a discrete set of val-
ues in each step, such as quantized object positions or orientations.
This makes gradient propagation from the ergonomic loss to the
transformer difficult.

To tackle the first challenge (C1), we observe that transformers
are typically trained with a strategy called teacher forcing, where
the partial sequence 𝑠<𝑖 preceding the current token 𝑠𝑖 is taken
from a ground truth layout. Thus, when generating a token 𝑠𝑖 , we
can evaluate the ergonomic loss on the layout defined by 𝑠<𝑖 , 𝑠𝑖 , 𝑠>𝑖 ,
where only 𝑠𝑖 is generated and both the preceding tokens 𝑠<𝑖 and
the following tokens 𝑠>𝑖 are taken from the ground truth, effectively
evaluating 𝑠𝑖 in the context of the ground truth layout.

To solve the second challenge (C2) we need an ergonomic loss
that is differentiable w.r.t. the probabilities 𝑝 (𝑠𝑖 |𝑠<𝑖 , 𝜃 ) predicted
by our generative model. A straight-forward solution computes
the expected value of the ergonomic loss 𝐸 over all possible values
𝑣 𝑗 of a token

∑
𝑗 𝐸 (𝑠<𝑖 , 𝑣 𝑗 , 𝑠>𝑖 )𝑃 (𝑠𝑖 = 𝑣 𝑗 |𝑠<𝑖 , 𝜃 ). This solution is

differentiable w.r.t. the probabilities, but requires an evaluation of
the ergonomic loss for each possible value of a token, which is
prohibitively expensive. Instead, we opt for a less exact but much
more efficient approach, where only a single evaluation of the
ergonomic loss per token is needed. We compute the ergonomic
loss L𝐸 as the ergonomic loss for the expected value of a token in
a small window around the most likely value of the token:

L𝐸 = 𝐸 (𝑠<𝑖 , 𝑣, 𝑠>𝑖 ), with (1)

𝑣 =

∑
𝑗

(
N(𝑣 𝑗 |𝑣, 𝜎) 𝑃 (𝑠𝑖 = 𝑣 𝑗 |𝑠<𝑖 , 𝜃 ) 𝑣 𝑗

)∑
𝑗

(
N(𝑣 𝑗 |𝑣, 𝜎) 𝑃 (𝑠𝑖 = 𝑣 𝑗 |𝑠<𝑖 , 𝜃 )

) ,

where N(𝑥 |𝑣, 𝜎) is the normal distribution centered at 𝑣 with stan-
dard deviation 𝜎 . 𝑣 is the token value with highest probability, and
𝜎 is set to 1/𝑟 in our experiments. Figure 6 illustrates the approach.
This loss provides gradients to all values in smooth window. Note
that increasing the size of the window by increasing 𝜎 would prop-
agate the gradient to a larger range of token values, but could also
result in expected token values 𝑣 that are in low-probability re-
gions of the distribution 𝑝 (𝑠𝑖 |𝑠<𝑖 , 𝜃 ), since the distribution may be
multi-modal. The total loss function L is then given by

L
(
𝑆𝑘

)
= 𝛽𝑇L𝑇

(
𝑆𝑘

)
+ 𝛽𝐸L𝐸

(
𝑆𝑘

)
, (2)

with L𝑇 being the cross-entropy loss, L𝐸 being our proposed er-
gonomic loss and 𝛽𝑇 , 𝛽𝐸 being weights that determine the influence
of the two loss terms to the overall loss. We use 𝛽𝑇 = 1 − 𝐸

(
𝑆𝑘

)
and 𝛽𝐸 = 𝐸

(
𝑆𝑘

)
, such that the cross-entropy loss has higher in-

fluence for training samples with better ergonomic loss while the
ergonomic loss is more important for samples with lower ergonomic
loss. Essentially, we want the network to learn about the general
target distribution from examples that are already considered good,
while learning how to improve the ergonomic loss from bad exam-
ples. In Section 5.1, we discuss the influence of the weights 𝛽𝑇 and
𝛽𝐸 in more detail.

4.3 Training and Inference
We train our models using the 3DFRONT dataset [Fu et al. 2021a,b]
as training data. During training, we randomly augment each train-
ing sample by horizontal mirroring and/or rotation in 90◦ steps, in
addition to applying a random permutation on the order of furniture
objects other than the room, windows and doors. For inference, we
follow a similar approach to the strategy proposed by Sceneformer
[Wang et al. 2020], using top-p nucleus sampling with 𝑝 = 0.9 for
the object categories, as well as the attributes of the room, doors
and windows. For the attributes of other object categories, we al-
ways pick the token with the highest probability. We also check for
intersections after sampling each furniture object and re-sample
the current object if it cannot be inserted into the layout without
intersecting other objects.

5 RESULTS AND EVALUATION
5.1 Ablation
To evaluate the influence of our proposed ergonomic loss, we define
3 ablations of our network that are trained with different loss func-
tions. Recall that the total loss function of our approach given in Eq.
2 is defined as the weighted sum of the cross-entropy loss L𝑇 and
the ergonomic loss L𝐸 with weights 𝛽𝑇 , 𝛽𝐸 . Using these weight
parameters, we define the following 3 ablations of our network:

• Baseline, with 𝛽𝑇 = 1 and 𝛽𝐸 = 0,
• Weight-only, with 𝛽𝑇 = 1 − 𝐸

(
𝑆𝑘

)
and 𝛽𝐸 = 0,

• Loss-only, with 𝛽𝑇 = 1 and 𝛽𝐸 = 1.

In other words, the baseline model only uses the cross-entropy loss
with each input sample having equal weight and is thus without
any of our enhancements. The weight-only model uses the cross-
entropy loss with each sample being weighted by its ergonomic
loss, while the loss-only model uses the sum of cross-entropy loss
and ergonomic loss with each input sample having equal weight.

Figure 7 depicts the cross-entropy loss and ergonomic loss evalu-
ated on both the training and validation sets for each version, using
the Bedroom dataset for training. The results show a decrease in
ergonomic loss for both the loss-only model and our full model
which make use of our ergonomic loss term during training. While
the decrease may seem small relative to the overall loss, please keep
in mind that the loss is computed for the entire scene with only one
token predicted by the network. The weight-only model only yields
a small decrease of ergonomic loss during training, since weighting
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Figure 7: Cross-entropy loss and ergonomic loss for our model and its ablations, evaluated on the Bedrooms dataset. The
training loss and validation loss refer to the cross-entropy loss on the training and validation sets, respectively. By including
our proposed ergonomic loss term during training we can significantly decrease the ergonomic loss of synthesized layouts.

GT
Ba

se
lin

e
Weig

ht-
on

ly
Lo

ss-
on

ly
Our

s
AT

ISS

0.0

0.2

0.4

0.6

0.8

Lo
ss

Mean ergonomic loss of 
 room-conditioned Bedrooms

GT
Ba

se
lin

e
Weig

ht-
on

ly
Lo

ss-
on

ly
Our

s
AT

ISS

0.4

0.2

0.0

0.2

0.4

Re
al

ism

Perceived realism of other 
 methods relative to the GT

Figure 8: Room-conditioned layout synthesis.We synthesize
20 layout variations for each floor plan in the Bedrooms val-
idation set and evaluate the ergonomic loss. The left chart
shows the mean ergonomic loss of the synthesized layouts,
with the 80% confidence interval of themean shown in black.
The realism of the synthesized layouts is evaluated in a user
study. The right chart shows how the layouts synthesized
using each method are perceived compared to the ground
truth, with a negative value meaning that the ground truth
is seen as more realistic. Our proposed approach improves
the ergonomic loss of the scenes, while also being perceived
as more realistic than the ground truth.

the training samples by their ergonomic loss only reduces the in-
fluence of bad training samples without teaching the network how
to improve the sample. However, this still has a noticeable effect
on the synthesized scenes as we will discuss in Section 5.2. Please
note that our loss-only model and our full model exhibit a higher
cross-entropy loss for both training and validation set. This result
is expected, since we aim to improve the ergonomic qualities of the
synthesized layouts instead of perfectly recreating the distribution
of the dataset.

5.2 Room-conditioned Layout Synthesis
We use our proposed model and its ablations introduced in the
previous section for layout synthesis and evaluate the results in
terms of both realism and ergonomic loss. In order to evaluate the
realism of our generated results, we perform a perceptual study
using Amazon Mechanical Turk in which we ask participants to
compare pairs of Bedroom layouts with the question of which
layout is more realistic on a 7-point scale. We compare layouts from
6 sources in this study: the ground truth layouts from the 3DFRONT

dataset [Fu et al. 2021a,b], layouts generated with our proposed
model and its ablations, and another state-of-the-art method ATISS
[Paschalidou et al. 2021], which we train using the code provided on
their website, modified to include windows and doors in the same
manner as our model. In each layout pair, a synthesized layout is
compared to a ground truth layout. A total of 330 users participated
in the study. Each pair of layouts was shown 3 times to 10 different
users each for a total of 30 comparisons per layout pair.

The left side of the Figure 8 shows the mean ergonomic loss of
all layouts created for the user study. As can be seen, our approach
performs the best at generating layouts with lower ergonomic loss,
reducing the mean ergonomic loss by 30.8% compared to the ground
truth data. The ablations of our model also improve the ergonomic
loss to a lesser extend, including the baseline model which we
attribute to our sampling strategy making it less likely to generate
arrangements that are learned from outliers in the training data.
On the other hand, layouts created with ATISS show the highest
ergonomic loss because the layouts are perceived as less realistic
than even our baseline model.

This can be seen on the right side of Figure 8 which shows how
the users perceive the realism of synthesized layouts compared
to those of the ground truth in a range of [−1, 1], with a negative
value meaning that the ground truth is seen as more realistic. The
responses show that ATISS is considered significantly less realistic
than the ground truth. On the other hand, the layouts generated by
all our models are seen as at least equally realistic as the ground
truth layouts, with users even preferring layouts created with our
full model over the ground truth. This shows that our approach can
not only improve the ergonomic quality in a purely quantitative
sense, but also improve the perceived realism of the layouts.

A qualitative comparison is shown in Figure 9. While all of the
methods produce plausible layouts, our approach generates, on
average, layouts with fewer ergonomic issues like missing light
sources or poor accessibility. Layouts sampled unconditionally for
multiple room categories are shown in Figure 10. In these examples,
all layout elements including the rooms, doors and windows are
generated by the network.

6 LIMITATIONS AND CONCLUSIONS
6.1 Limitations
Our proposed approach has a number of limitations. Designing lay-
outs is a complex high dimensional problem that includesmodalities
including selecting 3D furniture model that fit well together stylisti-
cally [Lun et al. 2015; Weiss et al. 2020]; architectural elements such
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Figure 9: Conditional synthesis results as described in Sec-
tion 5. Methods in a column receive the same room bound-
ary, windows, and doors as input condition. Our approach
produces on average layouts with less ergonomic issues like
missing light sources (e.g. Baseline columns 1, 2, 3) and poor
accessibility (e.g. blocked path in ATISS column 3).

as room shapes walls and floor plans [Wu et al. 2019]; and various
other aspects of lighting and illumination conditions [Vitsas et al.
2020]. While important, such methods are orthogonal to our scope
layout synthesis focused scope.

Furthermore, while our ergonomic loss functions are derived
from ergonomics literature, they are only theoretical models and
and have not been evaluated in a real-life setting. We think that
the problem of translating the vast number of ergonomic rules and
interior design guidelines into differentiable functions can be a
promising topic of further research [Schwartz 2021].

While we have demonstrated that our approach of incorporating
expert knowledge into the Transformer training process produces
promising results, we think that this is only the first step in com-
bining data-driven and rule-based learning using state-of-the-art
deep-learning models such as Transformers. We believe that future
research in this direction can assist with making data-driven learn-
ing approaches more applicable to domains where large amounts of
high-quality data with desired properties are not readily available.

6.2 Conclusions
We presented a novel method for the synthesis of indoor layouts,
which combines data-driven learning and manually designed expert
knowledge. To our knowledge, we are the first to propose such a
solution to the problem. The main benefit of our approach is that
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Figure 10: Generated layouts for different room types. Since
the attributes of the rooms were represented as part of the
input sequences during training, all layout elements includ-
ing rooms, doors, and windows can be generated by the net-
work. Ourmethod can generate furniture arrangements typ-
ical for each room type even with small training sets.

it allows emphasizing features that might be underrepresented or
not contained at all in the data. Simultaneously, we maintain the
benefits of a data-driven approach which is important for layout
generation which is high-dimensional and ill-defined. Manually
crafting all design rules needed to synthesize comparable results
would be very difficult and time consuming. Combining both expert
knowledge and a distribution learned from data gives us the benefits
from both worlds.

As a technical contribution, we proposed a modern Transformer
network that can be trained using a loss function composed of cross-
entropy and additional knowledge. We have shown that weighting
the two loss terms on a per-sample basis leads to results that fulfill
the additional objective well and still maintain a high degree of
realism. Further, we introduced expert knowledge in the form of
cost functions derived from ergonomics, whose goal is to improve
layouts to be more usable and comfortable for humans.

We described the details of our implementation (we will release
our code on GitHub), and we evaluated the method thoroughly. We
showed numerical quantitative results and performed a perceptual
study where our model out-performs recent related work. We also
used our system to synthesize a large set of realistically looking
results. Our method is meant to help professionals and amateurs in
the future to address the problem of interior layout design.
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