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S.1 Overview

In this supplementary, we provide additional details about our training (Sec-
tion S.2) and inference setups (Section S.3), and details of our evaluation metrics
(Section S.4). We provide an extended qualitative comparison of our method
to the Image2Surf baseline (Section S.5), and for visible surface generation on
real-world data (Section S.6). We show additional qualitative results for hid-
den surface generation (Section S.8) and also provide more visual results for
Pix2Surf (Section S.7) and more qualitative comparison to Pixel2Mesh++[3] and
AtlasNet[1] (Section S.9).

S.2 Training Details

For the Single-View case, we train our network in two phases. In the first
phase, we train the NOCS-UV branch with a learning rate of 1e−4, using the
NOCS Map and the object mask as supervision. In the second phase, we add the
remaining SP branch and train end-to-end until convergence, with a learning rate
of 1e−4 for cars and 3e−5 for planes and chairs, and using the losses described
in Section 4.1 in the paper.

For the Multi-View case, we have found that pre-training with the single-
view architecture, before switching to the full multi-view architecture results in
better initialization. For this purpose, we start by passing the feature zm, directly
to the SP branch without max-pooling multiple views. After pre-training, we
switch to the multi-view architecture as described in Section 4.2 in the paper, by
max-pooling the zm features of all views, and concatenating both this max-pooled
multi-view feature, and the single-view feature zm for the current view as input
to the MLP. We randomly pick 5 views as input during multi-view training.
For our multi-view consistency loss, we need to identify corresponding pixels in
different views. We sample pixels in each view as in the single-view case and find
corresponding pixels based on their distance in NOCS coordinates. Two pixels
are in correspondence if their NOCS distance is less than 1e−3.

We separately train on each object category of our dataset.

S.3 Inference Details

One significant advantage of our explicit continuous parametric surface predic-
tion is that we can sample the results at any resolution (e.g. points or vertices).
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We generate our final predictions at a regular grid of samples in the unwrapped
uv chart, obtaining a 3D location for each sample (obtained from the SP-Branch).
Since we have exact correspondence to pixels of the input image, each sample
also has a color value (or interpolated color value in super-resolution). Samples
corresponding to background pixels are masked out. To create a mesh, we can
connect neighboring foreground samples with edges. All visual results of our
method in the paper are generated using this approach. We provide more details.

Identifying foreground regions in the unwrapped chart. Unlike AtlasNet, the shape
and topology of the unwrapped surface in our chart is learned by the NOCS-
UV branch, which gives the reconstructed surface more flexibility to represent
arbitrary shapes and topologies. To identify foreground regions in the uv space
of the unwrapped chart, we map the the learned image-space foreground mask
to uv space. Directly unwrap the mask by learned-uv map (two channel output
from NOCS-UV branch) results in pixel cloud with holes in uv space. To solve
this issue, we up-sample the image-space mask and learned-uv map from its
original resolution of 240× 320 by a factor of 4 using linear interpolation before
mapping mask to uv space. To avoid interpolating across C0 discontinuities of
the surface, we only interpolate neighboring pixels that are mapped to similar
uv locations (i.e., the gradient of their uv coordinates is below a threshold). We
then map the up-sampled mask to uv space (resolution of 128 × 128) by the
up-sampled learned-uv map. Finally we up-sample the mask in uv space to the
desired resolution (in paper we use 512× 512).

In uv space, we additionally post-process the unwrapped foreground mask by
closing small holes using morphological operations. Finally, we remove outliers
using the predicted 3D locations (quarried from SP-Branch) of each mask sample.
A sample of the foreground mask is classified as outlier if the distance in 3D
space to any of its m-nearest neighbors is larger than a threshold t. In practice,
we use m = 6, t = 0.02 for car, m = 2, t = 0.03 for chair and m = 1, t = 0.02 for
airplane.

Texturing the unwrapped chart. Similar to the mask, directly unwrapping the
image-space color values to the uv space results in a sparse set of irregular color
samples in uv space. We can interpolate these samples to obtain the color value
at any point in uv space by interpolating the k nearest neighbors (we use k = 4
for our results).

S.4 Evaluation Metrics

We now define the evaluation metrics used in the paper.
A common surface representation: Before evaluating our metrics, we

convert the results of all methods to a common format to avoid biasing our results
due to different surface representations. We convert all output representations to
the NOCS-Map format defined in X-NOCS [2] using the ground truth camera
model. The NOCS map P samples the reconstructed surface from a single
viewpoint, giving a point cloud where each sample has a 2D pixel coordinate
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p and a 3D location x. The 3D location is defined in a canonical coordinate
frame that is shared across views and across instances of the same shape category.
For multi-view reconstructions, we create one NOCS-Map for each viewpoint,
compute the metrics on each NOCS-Map, and average the results over all views.

The Reconstruction Error is measured as the 2-Way-Chamfer-Distance
between the ground truth NOCS-Map P1 and predicted NOCS-Map P2:

Erec =
1

|P1|
∑

xi∈P1

min
yj∈P2

‖xi − yj‖22 +
1

|P2|
∑

yj∈P2

min
xi∈P1

‖xi − yj‖22.

The reconstruction error for hidden surfaces in Table 2 of paper is computed in
the same way, but using NOCS-Maps of the hidden surfaces.

The Correspondence Error is measured as the squared distance between
the predicted 3D location xi and the ground truth location yi of the same pixel:

Ecorr =
1

|M|
∑

pi∈M
‖xi − yi‖22.

We only evaluate pixels pi ∈M that are both in the predicted and ground truth
foreground masks.

Consistency Error is based on the squared distance between the predicted
3D locations of corresponding pixels in different views. For each pair of views a
and b, we identify corresponding pairs of pixels (pai , p

b
j) as pairs having a similar

ground truth 3D location in NOCS: ‖yai − ybj‖2 < ε. In practice, we set ε = 0.001.
We then average the squared distance between the predicted 3D locations xai and
xbj of all corresponding pixel pairs P2

corr:

Econs =
1

|P2
corr|

∑
(pa

i ,p
b
j)∈P2

corr

‖xai − xbj‖22.

With the Continuity Score, we take a statistical approach to measure the
quality of the surface continuity. We compute statistics of the C0 discontinuities in
the predicted surface, and measure the similarity to the same statistics computed
on the ground truth surface. The statistics are based on the 3D distance ‖xi−xj‖2
of neighboring foreground pixels pi and pj . Pixels with a large difference are
likely to lie on the border of a C0 discontinuity of the predicted surface. We
compute a histogram h of this 3D distance over all neighboring pixels:

hi = |{(pi, pj) ∈ P2
neighbors | ti ≤ ‖xi − xj‖2 < ti+1}|,

where ti are the boundaries of the histogram bins and P2
neighbors is the set of all

neighboring pixel pairs. We use a 4-connected neighborhood and choose 20 bins
with bin edges spaced uniformly in [0.05,

√
3]. We measure the similarity of two

histograms as the correlation of their normalized bins:

Scont =
1∑

k hk
∑

j h
gt
j

∑
i

hih
gt
i

Note that unlike the other errors we use as evaluation metrics, this is defined as
a score, where higher values imply better continuity of the reconstructed surface.
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S.5 Qualitative Comparison to Image2Surf

We show more qualitative comparisons between our baseline Image2Surf and
Pix2Surf in paper Sec 5.1. Image2Surf has a fatal problem to make “cut” around
the occlusion boundary (i.e., wrong C0 discontinuities), which is reflected both
in the red rectangle in Figure S1 and continuity score in Table 1 in paper.

Fig. S1. Qualitative Comparison to Image2Surf. The first row are the results of Pix2Surf
and the second row are for Image2Surf. Each instance is viewed from 2 different
viewpoints. Image2Surf wrongly connects disjoint parts and results in strong distortions,
which are solved by Pix2Surf’s learned chart.
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S.6 Qualitative Results on Real-World Data

We show more results for generalization to real world data mentioned in Sec 5.3
in paper. In Figure S2, we show single- and multi-view results for Pix2Surf that
is trained on ShapeNet COCO and inference on real world car. Note that the
texture in each view separately is better than the multi-view aggregation. This is
caused by the different light condition from different viewpoints. As our main
concern in this paper is not to fuse the texture from multiple views, we leave the
improvement of the texture to future works.

Fig. S2. Real world image generalization. The top part is single-view visualization:
input image, unwrapped chart with texture and 3 viewpoints of the reconstruction
for each instance. The bottom part is multi-view aggregation visualization. For every
instance, each row is: input images, unwrapped charts with texture, 3 viewpoints for
each view’s result separately and finally multi view aggregation.
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S.7 More Results

Figure S3 shows more results of Pix2Surf including the learned UV map (as
shown in Figure 4) and reconstruction outputs of both single-view and multi-view
architectures. See the caption for the details.

Fig. S3. Single-view and multi-view Pix2Surf reconstruction results. The results for each
object are presented in three rows. The first row shows five input views. Note that we do
not have camera parameters for any of these views. The second row shows the per-view
UV space that is generated by the multi-view variant of Pix2Surf. The UV space is
not directly constrained by any loss; the flattening of the objects that we can observe
and the large degree of consistency between different views is an emergent property of
our network. In the third row, we show, from left to right, (a) the reconstructed 3D
surface obtained by merging Pix2Surf single-view reconstructions (SV), (b) the Pix2Surf
multi-view reconstruction (MV), and (c) the ground truth reconstruction (GT). The
last three columns show the same results from a different viewpoint. Note the reduction
in the number of gaps and surface discontinuities when comparing the multi-view to
the single-view results.
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S.8 Qualitative Results for Hidden Surface Generation

The following table provides more visual results of Pix2Surf Two-Intersection
version (Sec 5.2 in paper), and comparison with X-NOCS [2]. Pix2Surf can easily
be extended to capture the invisible surface and is more accurate and smooth
than X-NOCS.

View 1 View 2 View 3

Pix2Surf
(sv)

X-NOCS
(sv)

Ground
Truth

Pix2Surf
(sv)

X-NOCS
(sv)

Ground
Truth

Pix2Surf
(sv)

X-NOCS
(sv)

Ground
Truth
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S.9 Qualitative Comparisons

As shown in the Table 4 in the paper, the following table demonstrates qualitative
comparisons among our Pix2Surf (both single-view and multi-view architectures),
AtlasNet[1], and Pixel2Mesh++ [3]. The colors in AtlasNet results show different
output patches.

View 1 View 2 View 1

Single
View

Multi-
View

Ground
Truth

Single
View

Multi-
View

Ground
Truth

Atlas
Net

Pixel2
Mesh++
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View 1 View 2 View 1

Single
View

Multi-
View

Ground
Truth

Single
View

Multi-
View

Ground
Truth

Atlas
Net

Pixel2
Mesh++
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